Один корень квадратного уравнения 3+√5, другой 3-√5, уравнение получается такое
((х-3)-√5)*((х-3)+√5)=0
(х-3)²-(√5)²=0
х²-6х+9-5=0
х²-6х+4=0 - это уравнение, у которого рациональные коэффициенты, а длины катетов являются корнями этого уравнения. Тогда площадь треугольника равна(3+√5)(3-√5)/2=(9-5)/2=2/ед. кв./
Осталось порассуждать, почему именно так подобраны коэффициенты и будет ли этот треугольник единственным.
Я думаю, что рациональные коэффициенты могли быть получены в результате произведения сопряженных корней.
Один корень квадратного уравнения 3+√5, другой 3-√5, уравнение получается такое
((х-3)-√5)*((х-3)+√5)=0
(х-3)²-(√5)²=0
х²-6х+9-5=0
х²-6х+4=0 - это уравнение, у которого рациональные коэффициенты, а длины катетов являются корнями этого уравнения. Тогда площадь треугольника равна(3+√5)(3-√5)/2=(9-5)/2=2/ед. кв./
Осталось порассуждать, почему именно так подобраны коэффициенты и будет ли этот треугольник единственным.
Я думаю, что рациональные коэффициенты могли быть получены в результате произведения сопряженных корней.
Как вариант..ответ 2.
Можно найти точки пересечения прямой СД с прямыми АМ и АВ для получения координат точек К и Д.
Пусть треугольник расположен в прямоугольной системе координат точкой С в начале, СВ по оси Ох.
Длину ВС примем равной 2 для удобства, АС = 2/√3.
Угловой коэффициент прямой СД равен √3, прямой АМ равен (-2/√3).
Точка К как пересечение СД и АМ: √3х = (-2/√3)х + (2/√3).
3х = -2х + 2,
5х = 2 х =2/5 = 0,4.
Точка Д как пересечение СД и АВ: √3х = (-1/√3)х + (2/√3).
3х = -1х + 2,
4х = 2 х =2/4 = 0,5.
Наклонные отрезки СК и СД пропорциональны их горизонтальным проекциям (это координаты по оси Ох).
Тогда СК:СД = 4/5.
ответ: СК:КД = 4:1.