Задача не совсем однозначна. Обычно в таких задачах находят площадь поверхности, которую нужно покрыть, площадь одной плитки и, разделив первую на вторую, находят нужное количество плиток. То есть
а) 200•180:(30•30)=40 (шт).
б) 200•180:(25•25)=57,6 =58 (шт).
Столько их потребуется, если укладывая плитки, которые по размеру не помещаются полностью целиком по размерам пола, резать некоторые и часть пола покрыть кусочками.
Но нередко количество плиток зависит от размеров как поверхности для покрытия, так и размеров самой плитки.
а) Если брать плитки размером 30•30 целиком, их потребуется по одной стороне 180:30=6 плиток, по второй
200:30=6 плиток и остается часть пола 20 см. Следовательно, нужен еще один ряд. Всего 6•7=42 плитки.
б) Если брать плитки размером 25•25, то по одной стороне поместится 200:25=8 плиток, по другой 180:25=7 плиток и останется 5 см пола. Т.е. нужен еще один ряд. Всего 8•8=64.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
Задача не совсем однозначна. Обычно в таких задачах находят площадь поверхности, которую нужно покрыть, площадь одной плитки и, разделив первую на вторую, находят нужное количество плиток. То есть
а) 200•180:(30•30)=40 (шт).
б) 200•180:(25•25)=57,6 =58 (шт).
Столько их потребуется, если укладывая плитки, которые по размеру не помещаются полностью целиком по размерам пола, резать некоторые и часть пола покрыть кусочками.
Но нередко количество плиток зависит от размеров как поверхности для покрытия, так и размеров самой плитки.
а) Если брать плитки размером 30•30 целиком, их потребуется по одной стороне 180:30=6 плиток, по второй
200:30=6 плиток и остается часть пола 20 см. Следовательно, нужен еще один ряд. Всего 6•7=42 плитки.
б) Если брать плитки размером 25•25, то по одной стороне поместится 200:25=8 плиток, по другой 180:25=7 плиток и останется 5 см пола. Т.е. нужен еще один ряд. Всего 8•8=64.
См. рисунок вложения.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5