Проведя перпендикуляр к меньшей стороне у нас получился прямоугольный треугольник гипотенуза которого равна корень из 21 а катеты корень из 15( по условию ) и корень из 6( длина меньшей диагонали которая является катетом треугольника ) Далее: из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее: Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15 ответ :15
Вариант 1 иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник. вариант 7 тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство х+7x>49x x+7x-49x>0 -57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя. кажется, все верно посчитано) Ура!)
из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее:
Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15
ответ :15
иначе говоря, может ли эта прогрессия состоять из ряда одинаковых членов? Запросто! Получится равносторонний треугольник.
вариант 7
тут надо посмотреть. Очевидно, что сумма двух "младших" сторон треугольника должна быть больше третье стороны. Если при значении 7 такие три числа возможны, то и треугольник из них сообразим как нарисовать.
пусть меньшая сторона х, тогда средняя по длине5 будет 7х, а длиннейшая 49х
считаем неравенство
х+7x>49x
x+7x-49x>0
-57x>0
Ясен перец, что неравенство верно только при отрицательных Х, а значит треугольника такого нарисовать нельзя.
кажется, все верно посчитано)
Ура!)