Напо. EFHQ -
2
EQ = QН,
Пь
ЕН
FQ
Доказать: ДFEQ = ДFОН.
Доказательство.
oombem-
1 Так как EQ = QН , то ДЕОН —
(по определению). Значит, Q0 —
высота и биссектриса (по свойству
треугольника), следовательно,
ZEQ0 = 2
(по свойству).
2 ДFEQ = ДFHQ (по двум сторонам и углу между ними), так как
а)
— QH (по условию),
б) 2
ZHQ0 (по доказанному),
B)
— общая.
------------------------
Значит нужно найти середину АС.
Ставишь ножку циркуля в вершину А и проводишь окружность (можно дугу) радиуса больше половины отрезка АС. Переставляешь ножку циркуля в вершину С и тем же радиусом чертишь вторую окружность. Окружности пересекутся в двух точках. Через эти точки проведи прямую, которая пересечет сторону АС посередине в точке В1. Соединяешь середину В1 с вершиной В. Медиана ВВ1 готова.
6. а) 60°, б) 120°, в) 120° и г) 90°.
7. а) 1/2, б) -1/2, в) -1/2, г) 0.
Объяснение:
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).