Площадь боковой поверхности конуса S = π * R * L, где R - радиус основания конуса, L - длина образующей конуса
В прямоугольном треугольнике AOB: высота конуса AO - катет радиус основания конуса BO - катет образующая конуса AB - гипотенуза ∠ABO = 74°
Катет BO прилежит к ∠ABO, найдем длину катета через косинус известного угла. Косинусом ∠ABO является отношения прилежащего катета BO к гипотенузе AB. По таблице Брадиса находим, что косинусу 74° соответствует величина 0,2756
cos(∠ABO) = BO / AB BO = AB * cos(∠ABO) BO = 28 * cos74° = 28 * 0,2756 = 7,7168 (см) R = 7,7168 (см)
2) Рассмотрим треугольник ABC. Так как сумма углов в любом треугольнике = 180, то: m(<A) + m(<B) +m(<C) = 180 => m(<A) = 180 - 2*m(<B) = 180 - 140 = 40.
3) BK - биссектриса => m(<ABK) = m(<KBC) = m(<B) : 2 => m(<ABK) = 70 : 2 = 35.
4) Рассмотрим треугольник ABC. Так как сумма углов в любом треугольнике = 180, то: m(<ABK) + m(<AKB) + m(<BKA) = 180 => m(<BKA) = 180 - 35 - 40 = 105.
R - радиус основания конуса, L - длина образующей конуса
В прямоугольном треугольнике AOB:
высота конуса AO - катет
радиус основания конуса BO - катет
образующая конуса AB - гипотенуза
∠ABO = 74°
Катет BO прилежит к ∠ABO, найдем длину катета через косинус известного угла. Косинусом ∠ABO является отношения прилежащего катета BO к гипотенузе AB. По таблице Брадиса находим, что косинусу 74° соответствует величина 0,2756
cos(∠ABO) = BO / AB
BO = AB * cos(∠ABO)
BO = 28 * cos74° = 28 * 0,2756 = 7,7168 (см)
R = 7,7168 (см)
S = π * 7,7168 * 28 = 3,1416 * 216,0704 ≈ 679 (см²)