Найди ошибку в утверждении и исправь ее
А) Две окружности касаются внешним образом. Радиусы их равны R = 8 см и r = 2 см, расстояние между центрами d = 6.
Б) Две окружности имеют, по крайней мере, три общие точки.
В) R = 4, r = 3, d = 5. Окружности не имеют общих точек.
Г) R = 8, r = 6, d = 4. Меньшая окружность расположена внутри большей.
Д) Две окружности не могут располагаться так, что одна находится внутри другой
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
∠СОА = ∠ОСВ + ∠В = 30° + 30° = 60°
ответ : Б, ∠ОСВ = 30°
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
∠СОА = ∠ОСВ + ∠В = 30° + 30° = 60°
ответ : Б, ∠ОСВ = 30°