Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Чертим отрезок АВ=7 см. Из А проведем луч и отложим на нем равные отрезки заданным числом. Конец последнего отрезка соединим с концом В заданного отрезка. Через концы отложенных на луче отрезков проведем прямые, параллельные прямой ВК. (Если не помните, как провести прямую, параллельную данной, найдите в учебнике, и в интернете на эту тему много информации).
а) на проведенном луче отложим 1+4=5 равных отрезков. Прямые, параллельные К1В, делят АВ на 5 равных частей. Часть АС=1, часть СВ=4. Длину получившихся отрезков можно посчитать на калькуляторе.
АС=7:5•1 (см); СВ=7:5•4(см)
б) отрезок АВ тем же делим на 2+3=5 частей.
АС=7:5•2 (см); СВ=7:5•3 (с м)
в) аналогично на проведенном луче отложим 5+6=11 равных частей, и отрезок АВ делится на 11 равных частей.
∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.
Объяснение (подробно):(см. рисунок приложения.)
Чертим отрезок АВ=7 см. Из А проведем луч и отложим на нем равные отрезки заданным числом. Конец последнего отрезка соединим с концом В заданного отрезка. Через концы отложенных на луче отрезков проведем прямые, параллельные прямой ВК. (Если не помните, как провести прямую, параллельную данной, найдите в учебнике, и в интернете на эту тему много информации).
а) на проведенном луче отложим 1+4=5 равных отрезков. Прямые, параллельные К1В, делят АВ на 5 равных частей. Часть АС=1, часть СВ=4. Длину получившихся отрезков можно посчитать на калькуляторе.
АС=7:5•1 (см); СВ=7:5•4(см)
б) отрезок АВ тем же делим на 2+3=5 частей.
АС=7:5•2 (см); СВ=7:5•3 (с м)
в) аналогично на проведенном луче отложим 5+6=11 равных частей, и отрезок АВ делится на 11 равных частей.
АС=7:11•5 (см); СВ=7:11•6 (см)