На меньшем основании ВС=а равнобочной трапеции АВСД построен правильный треугольник ВКС. Большее основание АД=b. Площадь треугольника ВКС Sвкс=а²√3/4, его высота h = а√3/2. Площадь трапеции Saвсд=1/2*(а+b)*h=1/2(a+b)*a√3/2=a(a+b)√3/4. По условию Saвсд=5Sвкс, тогда а(а+b)√3/4=5a²√3/4; a+b=5a, b=4a. Опустим в трапеции высоту ВН, тогда в равнобедренной трапеции АД =2АН+ВС или АН=(АД-ВС)/2=(b-a)/2=(4a-a)/2=3a/2. Из прямоугольного треугольника АВН найдем tg A=BH/AH=a√3*2/2*3a=√3/3. Значит <А =30градусов
Угол ОВА=90 градусов (радиус в точке касания перпендикулярен касательной). Секущая АО делит хорду ВС пополам в точке пересечения N и перпендикулярна ей (секущая из одной точки с касательными, проходящая через центр окружности к хорде, соединяющей точки касания). Итак, ВN - перпендикуляр из прямого угла на гипотенузу и равен согласно его свойству, √(ON*AN) =√2*6 =2√3. (NA=AO-NO). Тангенс угла ВОА равен отношению противолежащего катета к прилежащему = ВN/ON = 2√3/6 =√3/3 Значит угол ВОА = 30 градусов, а угол ВОС = 60 градусов. (так как АО - биссектриса углов ВАС и ВОС. Итак, угол ВОС= 60 градусов. Угол ВОС - это центральный угол, опирающийся на дугу ВС. Значит градусная мера этой дуги равна 60 градусам. ответ: градусная мера малой дуги ВС равна 60 градусов. (Если правильно понял условие задачи, что расстояние от центра до хорды равно 6см, а от центра до точки А равно 8см)
Итак, угол ВОС= 60 градусов.
Угол ВОС - это центральный угол, опирающийся на дугу ВС. Значит градусная мера этой дуги равна 60 градусам.
ответ: градусная мера малой дуги ВС равна 60 градусов.
(Если правильно понял условие задачи, что расстояние от центра до хорды равно 6см, а от центра до точки А равно 8см)