1) равносторонние, разносторонние и равнобедренные 2) равнобедренным называют треугольник у которого две стороны равны, равносторонним называют треугольник у которого все стороны равны, разносторонним называют треугольник у которого все стороны разные 3) 4)боковыми называются две равные стороны, а третьея называется основанием 5) в равнобедренном треугольнике углы при основании равны 6) биссектриса равнобедренного треугольника проведенная к основанию является медианой и высотой 7) эти углы равны 8) в равностороннем треугольнике все углы равны (каждый из них равен 60 градусов) 9) медиана проведённая из вершины равностороннего треугольника является биссектриса и высотой
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
2) равнобедренным называют треугольник у которого две стороны равны, равносторонним называют треугольник у которого все стороны равны, разносторонним называют треугольник у которого все стороны разные
3) 4)боковыми называются две равные стороны, а третьея называется основанием
5) в равнобедренном треугольнике углы при основании равны
6) биссектриса равнобедренного треугольника проведенная к основанию является медианой и высотой
7) эти углы равны
8) в равностороннем треугольнике все углы равны (каждый из них равен 60 градусов)
9) медиана проведённая из вершины равностороннего треугольника является биссектриса и высотой
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301