Найдите больший угол равнобедренной трапеции ABCD, если диаго-наль AC образует с основанием AD и боковой стороной AB углы, равные 30° и 45° соответственно.
Строишь радиусы в точки, где кончается хорда. Получаешь р/б треугольник с углом при вершине 120 °. Строишь в нем высоту к основанию. Получаешь два равных прямоугольных треугольника с углами 30°, 60°, 90°. Высота делит хорду пополам, поэтому против угла 60° лежит сторона 6 корней из 3. Гипотенуза тр-ков, которая равна радиусу, равна (6 корней из 3)/cos 30 ° = 12. Отсюда, по определению меры угла, длина дуги = 12* (120/180)*ПИ = 8 ПИ. Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) = 48 ПИ.
Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) =
48 ПИ.
в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
трапеция - четырехугольник, следовательно, если в неё можно вписать окружность, то сумма ее оснований равна сумме боковых сторон.
сумма оснований данной трапеции 3+5=8, а её средняя линия равна 4
пусть длина меньшего основания а . тогда длина большего - 8-а.
средняя линия трапеции делит саму трапецию на две меньшего размера, высоты каждой из которых равны половине высоты исходной.
площадь трапеции равна полусумме оснований, умноженной на высоту.
пусть высота каждой части трапеции равна h.
тогда площадь верхней трапеции будет (а+4)•h: 2,
а площадь большей (8-а+4)•h: 2=(12-а)•h: 2
по условию отношение этих площадей равно 5/11⇒
[ (а+4)•h: 2]: [ (12-а)•h: 2]=5/11
отсюда 60-5а=11а+44
16а=16
а=1
подробнее - на -