Найдите больший угол равнобедренной трапеции ABCD, если диаго-наль AC образует с основанием AD и боковой стороной AB углы, равные 30° и 45° соответственно.
Допустим AB =5 , BC =6 , BM =5 ,( AM =MC , M∈[AC] .
AC - ? Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма. Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 || AC² =2(5² +6²) -(2*5)²=22. AC =√22. ответ: √22.
AC - ?
Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма.
Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 ||
AC² =2(5² +6²) -(2*5)²=22.
AC =√22.
ответ: √22.
Или
Из ΔAMB по теореме косинусов
AB² =AM² +BM² -2AM*BM*cos∠AMB (1)
Аналогично из ΔCMB ,CB² =CM²+BM² -2CM*BM*cos(180° -∠AMB) или
CB² =CM²+BM² +2CM*BM*cos∠AMB (2)
Складывая уравнения (1) и (2) получаем :
AB² +CB²= AM²+CM² +2BM² ;
AB² +CB²= (AC/2)²+(AC/2)² +2BM² ;
AB² +CB²= AC²/2 +2BM² ;
2(AB² +CB²)= AC² +(2BM)² ; * * *AC² + BD² =2(AB² +CB²) || BD=2BM.* *
AC² = 2(AB² +CB²) -(2BM)²
ответ угол NAM = 33
Объяснение:
Рассмотрим треугольник ABC
1) Углы при основании в равнобедренном треугольнике равны, следовательно угол A = углу B = (180 - 16) : 2 = 82
2) так как AN - биссектриса, следовательно угол BAN = углу NAC = 82 : 2 = 41
Рассмотрим треугольник ABN
1) Угол BAN = 41, угол B = 16, следовательно угол BNA = 180 - 41 -16 = 123
Угол ANM = 180 - 123 = 57, так как являются смежными
Рассмотрим треугольник ANM
1) угол ANM = 57, угол AMN = 90, так как AM - высота, следовательно угол NAM = 180 - 90 - 57 = 33 градуса