task/24836913 ---.---.---.---.--- Дан острый угол с вершиной в точке О и точка M внутри этого угла, не лежащая на биссектрисе этого угла. Найти на сторонах угла точки A и B такие, что периметр треугольника MAB- наименьший (метод симметрии) ---------------------------------------- Решение : Условия "не лежащая на биссектрисе этого угла" не существенно Построим точки M₁ и M₂ симметричные M относительно сторон угла (a и b соответственно ). Прямая M₁M₂ пересекает стороны a и b угла O в точках A и B . ΔMAB искомый. Действительно,периметр ΔMAB : P=MA+AB + MB =M₁A+AB + M₂B =M₁M₂. Периметр же любого другого треугольника, например, ΔMXY : P₁=MX+AB+ MY = M₁X+AB + M₂Y || длина ломаной M₁XYM₂|| >M₁M₂= P.
Дано: тр. ABC и тр. A1B1C1 - подобны, AB=8см, BC=16см, AC=20см, P1=55см
тр. ABC и A1B1C1, подобны, значит:
AB/A1B1=BC/B1C1=AC/A1C1=P/P1=k, где k - коэффицент подобия.
P1=55;
P=8+16+20=44
значит k=P/P1=44/55=4/5
ищем стороны:
A1B1=5*AB/4=5*8/4=10см
B1C1=5*BC/4=20см
A1C1=5*AC/4=25см
значит наименьшая сторона тр. A1B1C1 -
A1B1=10см
ответ: 10см
2)
Дано: тр. ABC, AB=5см ,BC=8см, уг. B=60°
Найти: R=?
находим сторону AC по теореме косинусов:
AC^2=5^2+8^2-2*5*8*cos(B)
AC^2=25+64-2*40*1/2
AC^2=89-40
AC^2=49
AC=7см
искать R будем по теореме синусов:
AC/sin(B)=2R;
sin(B)=sin(60°)=корень(3)/2
R=AC/2sin(B)=7/кор(3)=7кор(3)/3
ответ: 7кор(3)/3
---.---.---.---.---
Дан острый угол с вершиной в точке О и точка M внутри этого угла, не лежащая на биссектрисе этого угла. Найти на сторонах угла точки A и B такие, что периметр треугольника MAB- наименьший (метод симметрии)
----------------------------------------
Решение :
Условия "не лежащая на биссектрисе этого угла" не существенно
Построим точки M₁ и M₂ симметричные M относительно сторон угла (a и b соответственно ). Прямая M₁M₂ пересекает стороны a и b угла O в точках A и B . ΔMAB искомый.
Действительно,периметр ΔMAB :
P=MA+AB + MB =M₁A+AB + M₂B =M₁M₂.
Периметр же любого другого треугольника, например, ΔMXY :
P₁=MX+AB+ MY = M₁X+AB + M₂Y || длина ломаной M₁XYM₂|| >M₁M₂= P.
рисунок см приложение