Задание 1. Пусть х -основание треугольника, тогда боковые стороны (х-2). Составим уравнение х=(х-2)+(х-2)=32 отсюда х=12, а боковая сторона 12-2=10см. ответ: боковые стороны треугольника равны 10см.
Задание 2. Рассмотрим треугольник HCB (он прямоугольный, т.к. CH-высота и угол HCВ равен 30градусам по условию), значит угол В равен 180-90-30=60градусов. Также мы знаем, что катет лежащий против угла в 30 градусов равен половине гипотенузы, значит поскольку катет ВН равен 3, то гипотенуза СВ равна 3*2=6. Теперь рассмотрим треугольник ACB (он прямоугольный Угол С равен 90градусов, т.к по условию AC параллельно СВ и угол В равен 60 градусов), значит угол А равен 180-90-60=30градусов. В треугольнике ACH угол ACH равен 180-90-30=60градусов. Треугольники ACH и HCB равны. Значит AC=CB равно 6. По теореме Пифагора 6^2+6^2=72. Значит АВ равна корень из 72
Свойства хорд Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде. Дуги, заключенные между параллельными хордами, равны. Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.
Если хорды равноудалены от центра окружности, то они равны. Если хорды равны, то они равноудалены от центра окружности. Большая из двух хорд находится ближе к центру окружности. Наибольшая хорда является диаметром. Если диаметр делит хорду пополам, то он перпендикулярен ей. Если диаметр перпендикулярен хорде, то он делит ее пополам . Равные дуги стягиваются равными хордами. Дуги, заключенные между параллельными хордами, равны. Все вписанные углы, опирающиеся на одну и ту же дугу, раны. Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны. Все вписанные углы, опирающиеся на диаметр, прямые. Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180.
Задание 1.
Пусть х -основание треугольника, тогда боковые стороны (х-2).
Составим уравнение х=(х-2)+(х-2)=32
отсюда х=12, а боковая сторона 12-2=10см.
ответ: боковые стороны треугольника равны 10см.
Задание 2.
Рассмотрим треугольник HCB (он прямоугольный, т.к. CH-высота и угол HCВ равен 30градусам по условию), значит угол В равен 180-90-30=60градусов.
Также мы знаем, что катет лежащий против угла в 30 градусов равен половине гипотенузы, значит поскольку катет ВН равен 3, то гипотенуза СВ равна 3*2=6.
Теперь рассмотрим треугольник ACB (он прямоугольный Угол С равен 90градусов, т.к по условию AC параллельно СВ и угол В равен 60 градусов), значит угол А равен 180-90-60=30градусов.
В треугольнике ACH угол ACH равен 180-90-30=60градусов.
Треугольники ACH и HCB равны. Значит AC=CB равно 6.
По теореме Пифагора 6^2+6^2=72.
Значит АВ равна корень из 72
Свойства хорд
Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.
Дуги, заключенные между параллельными хордами, равны.
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.
Если хорды равноудалены от центра окружности, то они равны.
Если хорды равны, то они равноудалены от центра окружности.
Большая из двух хорд находится ближе к центру окружности.
Наибольшая хорда является диаметром.
Если диаметр делит хорду пополам, то он перпендикулярен ей.
Если диаметр перпендикулярен хорде, то он делит ее пополам .
Равные дуги стягиваются равными хордами.
Дуги, заключенные между параллельными хордами, равны.
Все вписанные углы, опирающиеся на одну и ту же дугу, раны.
Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.
Все вписанные углы, опирающиеся на диаметр, прямые.
Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180.