Найдите длину окружности, вписанного в шестиугольник, стенка которого равна 2см Қабырғасы 2см-ге тең дұрыс алтыбұрышқа іштей сызылған шеңбердің ұзындығын табыңдар
Угол А вписанный, лежащий на одной дуге с центральным ВОС, следовательно ВОС=50*2=100 градусов (вписанный угол равен половине дуги, на которую он опирается, а центральный равен дуге, на которую он опирается, следовательно вписанный угол равен половине центрального, опирающегося на ту же дугу) дуга СВ=100 градусов из выше сказанного, следовательно дуга АС+дуга АВ=360-100=260 градусов (общая градусная мера окружности равна 360). Всего частей у нас из отношения 3:2 3+2=5, следовательно одна часть равна 260/5=52. Дуга АВ= 3 части=3*52=156 градусов, следовательно угол С, лежащий на ней равен 156/2=78 градусов. Дуга АС=2 части=2*52=104 градуса, следовательно угол В, лежащий на ней равен 104/2=52 градуса, или 180-50-78=52 градуса (сумма углов в треугольнике равна 180, а углы А и С нам известны, остается только отнять их).
Треугольник ABC: AB=BC=25, AC=14. Сначала найдем медиану, проведенную к основанию, назовем ее BK. В равнобедренном треугольнике высота, медина, биссектриса, опущенные на основание совпадают. Значит, BK разделила АС а равные части под прямым углом: AC=AK + KC=7+7=14. Теперь рассмотрим прямоугольный треугольник BKC, где угол К=90, ВС=25, КС=7, ВК-?. ТОгда по теореме Пифагора: ВК=25^2-7^2=24. Одна медиана найдена. Медианы АN=CM, их найдем по формуле нахождения медианы. Просто подставишь и получишь ответ.
Треугольник ABC: AB=BC=25, AC=14. Сначала найдем медиану, проведенную к основанию, назовем ее BK. В равнобедренном треугольнике высота, медина, биссектриса, опущенные на основание совпадают. Значит, BK разделила АС а равные части под прямым углом: AC=AK + KC=7+7=14. Теперь рассмотрим прямоугольный треугольник BKC, где угол К=90, ВС=25, КС=7, ВК-?. ТОгда по теореме Пифагора: ВК=25^2-7^2=24. Одна медиана найдена. Медианы АN=CM, их найдем по формуле нахождения медианы. Просто подставишь и получишь ответ.