Решение понятно из рисунка. Треугольник АВС правильный, значит точка D лежит ВНЕ треугольника. Значит есть два варианта ответа, для точек D, симметричных относительно Стороны АВ треугольника. В первом случае <BAD=90°, значит <CAD=30° (90°-60°). Треугольник АВD равнобедренный (прямоугольный с углами 45°). АВ=АD. Значит треугольник DAC тоже равнобедренный (АС=АD) с углом при вершине 30°. Тогда <ADC=(180-30 ):2=75°, а <CDB=75-45=30°/ ответ: <СDB=30°
Во втором случае: В равеобедренном треугольнике АD1С (AD1=AC) <D1AC=90+60=150°. Тогда <AD1C=<D1CA=15°, а <CD1B=45-15=30° ответ: <СD1B=30°
1)угол АСВ=44 по теории о парал.прямых
смежный угол ЕDA, ЕDС = 78, а по Т. о смеж.углах известно, что
сумма смеж.углов равна 180⇒
АDС = 180 - 78 = 102
теперь нам известно 2 угла из треугольника АDС (сумма углов равна 180), то есть, 180 - 44 - 102 = 34.
угол АСD = 34
но тут, чтобы узнать угол АСВ нужно 180-102 - 34= 44(так мы нашли его)
2) теперь можно найти угол ВАС:
тут опять же смеж.углы, то есть, 180-44=136
а по условию известно что секущая делит угол КАС пополам, ⇒ 136:2=68
3)теперь в треугольнике АВС нам известно 2угла
1угол= 68
2угол = 44
а сумма всех углов в треугольнике равна 180
и так мы можем узнать угол АВС ⇒
180-68-44=68
угол АВС = 68
угол АСВ=44
угол ВАС=68
Треугольник АВС правильный, значит точка D лежит ВНЕ треугольника. Значит есть два варианта ответа, для точек D, симметричных относительно Стороны АВ треугольника.
В первом случае <BAD=90°, значит <CAD=30° (90°-60°).
Треугольник АВD равнобедренный (прямоугольный с углами 45°). АВ=АD. Значит треугольник DAC тоже равнобедренный (АС=АD) с углом при вершине 30°. Тогда <ADC=(180-30 ):2=75°, а <CDB=75-45=30°/
ответ: <СDB=30°
Во втором случае:
В равеобедренном треугольнике АD1С (AD1=AC) <D1AC=90+60=150°.
Тогда <AD1C=<D1CA=15°, а <CD1B=45-15=30°
ответ: <СD1B=30°