Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
1)начнем с того, что это равнобедренная трапеция. углы при основаниях равны. то есть угол а=в=(360-120*2)/2=60 градусов; d=c=120 градусов. 2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3 3)теперь рассматриваем отдельно треугольник adh: уголahd=90(dh-высота) угол dah=60 сумма всех углов =180, тогда угол adh=180-90-60=30 4) рассмотрим опять этот треугольник угол adh=30 сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы) и получается, что ad=cb=6. отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.
2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3
3)теперь рассматриваем отдельно треугольник adh:
уголahd=90(dh-высота)
угол dah=60
сумма всех углов =180, тогда угол adh=180-90-60=30
4) рассмотрим опять этот треугольник угол adh=30
сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы)
и получается, что ad=cb=6.
отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34