а) Известно, что если стороны прямоугольного треугольника равны по 1, то по теореме Пифагора гипотенуза равна √(1² + 1²) = √2. Поэтому откладываем из одной точки по горизонтали и вертикали отрезки, равные по 1 и соединяем их концы. получаем отрезок, равный √2.
б) Известно, что tg 60° = √3. Поэтому откладываем отрезок, равный 1, по горизонтали и восстанавливаем перпендикуляр вверх. От свободной точки горизонтального отрезка раствором циркуля, равным 2 единицы делаем на перпендикуляре засечку. Длина вертикального отрезка равна √3.
Смотри прикреплённый рисунок.
а) Известно, что если стороны прямоугольного треугольника равны по 1, то по теореме Пифагора гипотенуза равна √(1² + 1²) = √2. Поэтому откладываем из одной точки по горизонтали и вертикали отрезки, равные по 1 и соединяем их концы. получаем отрезок, равный √2.
б) Известно, что tg 60° = √3. Поэтому откладываем отрезок, равный 1, по горизонтали и восстанавливаем перпендикуляр вверх. От свободной точки горизонтального отрезка раствором циркуля, равным 2 единицы делаем на перпендикуляре засечку. Длина вертикального отрезка равна √3.
ответ: 30°
Объяснение:
1. Расстояние от точки до прямой -- это перпендикуляр из этой точки к прямой.
CH ⊥ AB
Расстояние от точки до плоскости -- это перпендикуляр из этой точки к плоскости.
CD ⊥ (ABD)
2. CD ⊥ (ABD), DH c (ABD) ⇒ CD ⊥ DH (прямая, перпендикулярная плоскости, перпендикулярна любой прямой в этой плоскости)
3. CH -- наклонная, CD ⊥ (ABD) ⇒ DH -- проекция CH на плоскость (ABD).
4. CH -- накл., DH -- проекц., CH ⊥ AB ⇒ DH ⊥ AB (теорема о трёх перпендикулярах)
5. Угол между плоскостями -- это угол между перпендикулярами, проведёнными к их общему ребру.
(ABC) ∩ (ABD) = AB -- ребро
CH ⊥ AB, CH c (ABC); DH ⊥ AB, DH c (ABD) ⇒ ∠((ABC), (ABD)) = ∠DHC -- искомый
6. Пусть CD = x, тогда CH = 2x. Рассмотрим прямоугольный ΔCDH.
Катет в два раза меньше гипотенузы ⇒ ∠CHD = 30° (теорема об угле 30° в п/у Δ)