ответ неожиданный 18 градусов обосную этот ответ поскольку о центр окружности описанной около abm то oa=ob=om тк o центр вписанной окружности в abd тогда проведем перпендикуляры из точки o к точкам касания которые равны как радиусы а тогда следует Аш 2 утверждения во первых треугольники aob и Bom равнобедренные а во вторых они равны по равной боковой стороне и равным высотам опущенным на основание которые равны как радиусы вписанной окружности теперь нужно еще 1 утверждение что центр вписанной окружности лежит на бессектрисы угла dab тк центр вписанной окружности есть точка сечения его бессектрис обозначим неизв угол bao =r тк треугольники abo и Bom равны и равнобедренные то угол abo=mbo=r тогда угол b=2r тк прямая al продолжение ao есть бессектриса угла dab то dab =2r и еще раз те ad бессектриса угла mab или a то угол а=4r тк ab=bm в силу равенства равноб треуг то угол m тоже 4r в итоге по теор о сумме углов треуг имеем 2r+4r+4r=180 10r=180 r=18 вот так вот
Пусть ΔABC ; точки касания M∈ [AB] ,N∈[BC] и K∈[AC] и Пусть ∠KMN =α ;∠KNM =β.
∠KMN =180° -(∠KMA +∠NMB) =180° -((180°-∠A)/2 +(180° -<B)/2)) =(∠A+∠B)/2.
∠A+∠B =2α (1) ; * * * ⇒ ∠A =2α -∠B * * *
аналогично :
∠C+∠B=2β (2) . * * * ⇒ ∠C =2α -∠B * * *
Суммируем (1) и (2), получим:
(∠A+∠B+∠C )+∠B =2α +2β ;
180°+∠B=2α +2β ;
∠B =2(α +β) -180°.
поставляя это значение в (1) и (2) соответственно получаем :
∠A =2α - ∠B = 180° -2β ;
∠C =2α - ∠B = 180° -2α .
ответ: 2(α +β) -180° , 180° -2α , 180° -2β .
* * * * * * * комментария * * * * * * *
ΔAMK , ΔBMN равнобедренные.
* * * * * * * По другому * * * * * * *
∠AMK =(дугаMK)/2 =(∠MOK)/2 =(180° -∠A)/2.
∠NMB =(дугаMN)/2 =(∠MON)/2 =(180° ∠B)/2.
и т.д.