1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
Объяснение:
Дано:
АH=12 см, АВ=13 см, D = 26 = 2r
BC = ?
описанная окружность с центром на серединных перпендикуляров .
для вписанного в окружность Δ R= (a*b*c)/ (2S)
АК = КС = 1/2 *АС; АМ = МВ = 1/2 *АВ
из ΔАОМ ; ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]
OM = 6.5√3 то есть АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .
ΔАОВ - равнобедренный АО = ОВ, ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота. (см рис.2) ⇒ AC = BC
( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^) = √(13+12)(13-12)=√25 = 5
ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами, а именно
R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)
SΔавс 4 1/2*BH*AC