Основание треугольника, средняя линия, половины боковых сторон, прилегающие к основанию (не к вершине) образуют равнобокую трапецию суммы длин противоположных сторон трапеции равны если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2 значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника можно еще и угол у основания найти cos(alpha)=(b/2)/a=2/3
1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
суммы длин противоположных сторон трапеции равны
если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2
значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника
можно еще и угол у основания найти
cos(alpha)=(b/2)/a=2/3
2) Обозначим высоту ВН.
Р тр-ка АВН: АВ+АН+5=18;
Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства:
АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС.
3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.