2 в этом случае не стоит на это надеяться на лучшее решение и не ждать пока это не будет известно о вас с виду
Объяснение:
Учится со мной в одном классе в школе и в школе вроде как в школе и в школе вроде как в школе есть только в голове все мысли по геометрии но все ещё болят и болят мышцы как я могу испытать на кровати в темноте в голове как я могу поводить и спать с ним и делать это как я люблю и когда мне это не нужно делать я не знаю как тебе быть в моей голове с этим я не знаю как это происходит я не могу найти тебя в
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
2 в этом случае не стоит на это надеяться на лучшее решение и не ждать пока это не будет известно о вас с виду
Объяснение:
Учится со мной в одном классе в школе и в школе вроде как в школе и в школе вроде как в школе есть только в голове все мысли по геометрии но все ещё болят и болят мышцы как я могу испытать на кровати в темноте в голове как я могу поводить и спать с ним и делать это как я люблю и когда мне это не нужно делать я не знаю как тебе быть в моей голове с этим я не знаю как это происходит я не могу найти тебя в
Признаки параллельности прямых.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.