Отрезок АВ пересекает плоскость α, следовательно, т.А и т.В расположены по по разные стороны от плоскости.
Через две параллельные прямые можно провести плоскость, притом только одну. АА1 и ВВ1 лежат в одной плоскости, параллельная им ММ1 лежит в той же плоскости. Эта плоскость пересекает плоскость α по прямой А1В1.
Проведем АС║А1В1 и продолжим ММ1 до пересечения с ней в т.К, а ВВ1 - в точке С.
В параллелограмме АА1В1С стороны СВ1=АА1=5, МК параллельна им и равна 5.
В ∆ АВС прямая МК - средняя линия и равна половине ВС.
Если высота, опущенная на сторону СД делит её пополам, значит она является его медианой, а это означает, что ΔДВС- равнобедренный, ВС=ВД Поскольку в равнобедренном ΔДВС высота является медианой, то она является также и его биссектрисой, значит угол ДВС=2*30=60⁰, а это значит, что ΔДВС не только равнобедренный, но и равносторонний, ДВ=ВС=СД=АВ=10 см Другими словами - параллелограмм АВСД есть не что иное, как ромб, составленный из двух равносторонних треугольников со стороной 10 см P abcd=4*10=40см²
Отрезок АВ пересекает плоскость α, следовательно, т.А и т.В расположены по по разные стороны от плоскости.
Через две параллельные прямые можно провести плоскость, притом только одну. АА1 и ВВ1 лежат в одной плоскости, параллельная им ММ1 лежит в той же плоскости. Эта плоскость пересекает плоскость α по прямой А1В1.
Проведем АС║А1В1 и продолжим ММ1 до пересечения с ней в т.К, а ВВ1 - в точке С.
В параллелограмме АА1В1С стороны СВ1=АА1=5, МК параллельна им и равна 5.
В ∆ АВС прямая МК - средняя линия и равна половине ВС.
ВС=ВВ1+СВ1=12
МК=12:2=6
ММ1=МК-М1К=6-5=1 ( ед. длины)
Поскольку в равнобедренном ΔДВС высота является медианой, то она является также и его биссектрисой, значит угол ДВС=2*30=60⁰, а это значит, что ΔДВС не только равнобедренный, но и равносторонний, ДВ=ВС=СД=АВ=10 см
Другими словами - параллелограмм АВСД есть не что иное, как ромб, составленный из двух равносторонних треугольников со стороной 10 см
P abcd=4*10=40см²