∠ABC - прямой. ∠DBC = ∠ABC - ∠ABD = 90° - 60° = 30° ΔBDC и ΔABD - прямоугольныt (∠BDC и ∠BDA прямые, т.к. BD - высота).
В прямоугольном треугольнике напротив в угла 30° лежит катет в два раза меньше гипотенузы. В ΔBCD BC - гипотенуза, DC - катет напротив угла в 30° ⇒ DC = 1/2 BC = 1 см. В этом же треугольнике по теореме Пифагора находим BD:
∠BAD = 90° - ∠DBA = 30° В ΔADB AB - гипотенуза, BD - катет напротив угла в 30° ⇒ AB = 2BD = 2√3 см Из этого же треугольника по теореме Пифагора находим AD:
ΔBDC и ΔABD - прямоугольныt (∠BDC и ∠BDA прямые, т.к. BD - высота).
В прямоугольном треугольнике напротив в угла 30° лежит катет в два раза меньше гипотенузы. В ΔBCD BC - гипотенуза, DC - катет напротив угла в 30° ⇒ DC = 1/2 BC = 1 см.
В этом же треугольнике по теореме Пифагора находим BD:
∠BAD = 90° - ∠DBA = 30°
В ΔADB AB - гипотенуза, BD - катет напротив угла в 30° ⇒ AB = 2BD = 2√3 см
Из этого же треугольника по теореме Пифагора находим AD:
AC = AD + DC = 3 + 1 = 4 см
ответ: 4 см
1) треугольник АВС и треугольник А1В1С1 равны
значит ВА=В1А1и угол А=угол А1
Прямоугольные треугольники DВА и D1В1А1 равны за гипотенузой(ВА=В1А1) и острым углом(угол А=угол А1)
Из равности треугольников слдует равенство ВD = В1D1, то есть требуемое
2) Прямоугольные треугольники ADK и CEP равны за первым признаком равенства треугольников
угол K=угол Р=90 градусов АК=РС,DK=РЕ по условию.
Из равенства треугольников следует равенство углов
угол А=угол С, а за признаком равнобедрнного треугольника
треугольник АВС равнобедренный и АВ=ВС, что и требовалось доказать.