Найдем величины дуг, на которые разделена окружность вершинами треугольника. Пусть меньшая дуга - х, вторая дуга -2х, третья дуга - 3х, т.к. отношение дуг 1:2:3. Тогда х+2х+3х=360 х=60⁰, 2х=120⁰, 3х=180⁰ Углы треугольника по отношению к окружности являются вписанными, т.е. их градусная мера равна 30⁰, 60⁰ и 90⁰ Треугольник прямоугольный, с острым углом в 30⁰, против этого угла лежит меньшая сторона треугольника, равная 17. Катет, лежащий против угла в 30⁰, равен половине гипотенузы. Значит гипотенуза равна 34, эта сторона лежит против угла 90⁰, т.е. это диаметр описанной окружности. Радиус окружности равен 17.
3)треугольники равны по 1(общей) стороне и 2 прилежащим углам
4)треугольники равны по 2 сторонам и прилежащим к ним углу
5)треугольники равны по 1(общей) стороне и 2 прилежащим углам
6)Треугольники образуют равнобедренный треугольник ⇒ сторона MS = SO ⇒ ΔQMS = ΔSOT (так как ∠QSM = ∠TSO как вертик. Сторона MS = SO и ∠QMS = ∠SOT) ⇒ MS + ST = OS + SQ ⇒ QO = MT ⇒ ΔMTO = ΔMQO (по 2 сторонам и прилежащим к ним углу)
7)ΔROQ = ΔOPD (по 2 сторонам и прилежащим к ним углу) ⇒ RO = PO и DO = OQ ⇒ RO + OD = PO + OQ ⇒ RD = QP ⇒ ΔEDR = ΔPEQ (по 2 сторонам и прилежащим к ним углу)
8)∠ACB = ∠ECD (как вертик.) ∠BAC = ∠CED(как смежные) ⇒ ΔABC = ΔCED(по 1 стороне и 2 прилежащим углам)
13)CE = CA так как CD + DE = AB + BC ⇒ ΔACE равноб. ⇒ ∠A = ∠E ⇒ ΔABF = ΔKDE (по 1 стороне и 2 прилежащим углам)
14)∠ABF = ABC - 90*
∠DCE = DCB - 90* ⇒ ∠ABF = ∠DCE
так как BC║AD то BF = CE ⇒ ΔABF = ΔDCE(по 1 стороне и 2 прилежащим углам)
Тогда х+2х+3х=360
х=60⁰, 2х=120⁰, 3х=180⁰
Углы треугольника по отношению к окружности являются вписанными, т.е. их градусная мера равна 30⁰, 60⁰ и 90⁰
Треугольник прямоугольный, с острым углом в 30⁰, против этого угла лежит меньшая сторона треугольника, равная 17. Катет, лежащий против угла в 30⁰, равен половине гипотенузы. Значит гипотенуза равна 34, эта сторона лежит против угла 90⁰, т.е. это диаметр описанной окружности. Радиус окружности равен 17.
3)треугольники равны по 1(общей) стороне и 2 прилежащим углам
4)треугольники равны по 2 сторонам и прилежащим к ним углу
5)треугольники равны по 1(общей) стороне и 2 прилежащим углам
6)Треугольники образуют равнобедренный треугольник ⇒ сторона MS = SO ⇒ ΔQMS = ΔSOT (так как ∠QSM = ∠TSO как вертик. Сторона MS = SO и ∠QMS = ∠SOT) ⇒ MS + ST = OS + SQ ⇒ QO = MT ⇒ ΔMTO = ΔMQO (по 2 сторонам и прилежащим к ним углу)
7)ΔROQ = ΔOPD (по 2 сторонам и прилежащим к ним углу) ⇒ RO = PO и DO = OQ ⇒ RO + OD = PO + OQ ⇒ RD = QP ⇒ ΔEDR = ΔPEQ (по 2 сторонам и прилежащим к ним углу)
8)∠ACB = ∠ECD (как вертик.) ∠BAC = ∠CED(как смежные) ⇒ ΔABC = ΔCED(по 1 стороне и 2 прилежащим углам)
13)CE = CA так как CD + DE = AB + BC ⇒ ΔACE равноб. ⇒ ∠A = ∠E ⇒ ΔABF = ΔKDE (по 1 стороне и 2 прилежащим углам)
14)∠ABF = ABC - 90*
∠DCE = DCB - 90* ⇒ ∠ABF = ∠DCE
так как BC║AD то BF = CE ⇒ ΔABF = ΔDCE(по 1 стороне и 2 прилежащим углам)