В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Aytgbssh
Aytgbssh
22.10.2022 07:55 •  Геометрия

Найдите пары равных треугольников и докажите их равенство!

Умоляю с решением!


Найдите пары равных треугольников и докажите их равенство!Умоляю с решением!

Показать ответ
Ответ:
algor7979
algor7979
05.05.2021 21:45

Дано: пирамида SABC, SH⊥(ABC), SH = 4 см,

          ∠ASH=∠CSH=∠BSH=45°, ∠ACB=90°, ∠BAC=30°

Найти : Sбок

Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы.    H ∈ AB, AH = BH.

SH⊥(ABC)  ⇒  SH⊥AB  ⇒  ∠SHA=90°

ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45°   ⇒  AH = SH = 4 см    ⇒  AB = AH + BH = 8 см;  SA = 4√2 см

SA = SB = SC = 4√2 см

ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см

По теореме Пифагора

AC² = AB² - BC² = 8² - 4² = 48

AC = √48 = 4√3 см

S_{\Delta ASB}=\dfrac{AB\cdot SH}2=\dfrac {8\cdot 4}2=16 см²

Площадь двух других граней можно найти по формуле Герона

S=\sqrt{p(p-a)(p-b)(p-c)}

ΔASC, p=\dfrac{4\sqrt2+4\sqrt2+4\sqrt3}2=4\sqrt2+2\sqrt3

S_{\Delta ASC}=\sqrt{(4\sqrt2+2\sqrt3)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt3)}=\\\\=\sqrt{(4\sqrt2+2\sqrt3)(2\sqrt3)(2\sqrt3)(4\sqrt2-2\sqrt3)}=\sqrt{(32-12)\cdot 12}=\sqrt{240}\boldsymbol{=4\sqrt{15}}

ΔBSC, p=\dfrac{4\sqrt2+4\sqrt2+4}2=4\sqrt2+2

S_{\Delta BSC}=\sqrt{(4\sqrt2+2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4)}=\\\\=\sqrt{(4\sqrt2+2)\cdot2\cdot2(4\sqrt2-2)}=\sqrt{(32-4)\cdot 4}=\sqrt{28\cdot 4}\boldsymbol{=4\sqrt{7}}

S=S_{\Delta ASB}+S_{\Delta ASC}+S_{\Delta BSC}=16+4\sqrt{15}+4\sqrt 7

ответ:  4(4 + √15 + √7) см²


Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образ
0,0(0 оценок)
Ответ:
gilsveta4
gilsveta4
05.05.2021 21:45

Дано: пирамида SABC, SH⊥(ABC), SH = 4 см,

          ∠ASH=∠CSH=∠BSH=45°, ∠ACB=90°, ∠BAC=30°

Найти : Sбок

Решение : так как боковые рёбра образуют с высотой пирамиды равные углы, значит, они образуют равные углы с основанием пирамиды (острые углы прямоугольных треугольников, равных по общему катету и острому углу). ⇒ Высота опускается в центр окружности, описанной около основания пирамиды. Основание пирамиды - прямоугольный треугольник, центр описанной окружности лежит на середине гипотенузы.    H ∈ AB, AH = BH.

SH⊥(ABC)  ⇒  SH⊥AB  ⇒  ∠SHA=90°

ΔSAH - прямоугольный равнобедренный, так как ∠SAH=∠ASH=45°   ⇒  AH = SH = 4 см    ⇒  AB = AH + BH = 8 см;  SA = 4√2 см

SA = SB = SC = 4√2 см

ΔABC - прямоугольный. Катет, лежащий против угла 30°, равен половине гипотенузы. BC = AB/2 = 4 см

По теореме Пифагора

AC² = AB² - BC² = 8² - 4² = 48

AC = √48 = 4√3 см

S_{\Delta ASB}=\dfrac{AB\cdot SH}2=\dfrac {8\cdot 4}2=16 см²

Площадь двух других граней можно найти по формуле Герона

S=\sqrt{p(p-a)(p-b)(p-c)}

ΔASC, p=\dfrac{4\sqrt2+4\sqrt2+4\sqrt3}2=4\sqrt2+2\sqrt3

S_{\Delta ASC}=\sqrt{(4\sqrt2+2\sqrt3)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt2)(4\sqrt2+2\sqrt3-4\sqrt3)}=\\\\=\sqrt{(4\sqrt2+2\sqrt3)(2\sqrt3)(2\sqrt3)(4\sqrt2-2\sqrt3)}=\sqrt{(32-12)\cdot 12}=\sqrt{240}\boldsymbol{=4\sqrt{15}}

ΔBSC, p=\dfrac{4\sqrt2+4\sqrt2+4}2=4\sqrt2+2

S_{\Delta BSC}=\sqrt{(4\sqrt2+2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4\sqrt2)(4\sqrt2+2-4)}=\\\\=\sqrt{(4\sqrt2+2)\cdot2\cdot2(4\sqrt2-2)}=\sqrt{(32-4)\cdot 4}=\sqrt{28\cdot 4}\boldsymbol{=4\sqrt{7}}

S=S_{\Delta ASB}+S_{\Delta ASC}+S_{\Delta BSC}=16+4\sqrt{15}+4\sqrt 7

ответ:  4(4 + √15 + √7) см²


Основание пирамиды - прямоугольный треугольник с острым углом 30. высота пирамиды равна 4 см и образ
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота