По условиям задачи дано AB = CD, BC = AD. Чтобы доказать равенство треугольника ABC и треугольника ACD, нужно выделить признак равенства треугольников по трем сторонам. Две стороны у нас равны, а третья - AC - общая, это подходит под формулировку третьего признака равенства треугольников. Признак равенства треугольника звучит так: если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. AB = CD, BC = AD, AC - общая => треугольник ABC равен треугольнику ACD, что и требовалось доказать.
Стороны ромба равны, следовательно сторона ромба= 40:4=10 см. Проведем диагональ, противоположную углу в 60 градусов. Имеем равнобедренный треугольник. опустим перпендикуляр на противоположную диагональ. Т.К. треуг. у нас равнобедренный, то он является и биссектрисой, т.е разделил угол 60 градусов пополам. Теперь воспользуемся теоремой, что катет , лежащий против угла в 30 градусов = половине гипотенузы, имеем половина искомой диагонали = 10:2=5, вся диагональ = 10 см. А чертеж просто нарисуй ромб.
Проведем диагональ, противоположную углу в 60 градусов. Имеем равнобедренный треугольник.
опустим перпендикуляр на противоположную диагональ. Т.К. треуг. у нас равнобедренный, то он является и биссектрисой, т.е разделил угол 60 градусов пополам. Теперь воспользуемся теоремой, что катет , лежащий против угла в 30 градусов = половине гипотенузы, имеем половина искомой диагонали = 10:2=5, вся диагональ = 10 см.
А чертеж просто нарисуй ромб.