Треугольник АВС, АВ=ВС=АС, О-центр треугольника пересечение-высот=биссектрисам=медианам, МО=6, МА=МВ=МС=12, проводим высоту ВН на АС, треугольник МВО прямоугольный, ВО=корень(МВ в квадрате-МО в квадрате)=корень(144-36)=6*корень3, медианы при пересечении делятся в отношении 2/1 начиная от вершины, ВО/ОН=2/1, ОН=ВО/2=6*корень3/2=3*корень3, проводим перпендикуляр МН на АС, треугольник МОН прямоугольный, МН=корень(МО в квадрате+ОН в квадрате)=корень(36+27)=3*корень7 - т.к треугольник АВС равносторонний то все высоты проведенные на стороны треугольника с вершины М=3*корень7
1)Треугольник АВС . Если вписанный в окружность угол =90 градусов ,то он опирается на диаметр. Поэтому АВ является диаметром . Из центра окружности опустим перпендикуляр на катет АС. Точка К разделит АС пополам по теор. Фалеса .Поэтому АС=а. 2) Треугольник АОС (угол К =90 градусов) : АО=АК/сos2a=а/cos2a. ОК=АК *tg2a=atg2a 3) МК перпендикулярна АС по теор о 3-х перпендик.,угол МКО есть двугранного угла плоскости АСМ и плоскостью основания . Треугольник МОК -прямоугольный и равнобедренный . Угол МКО= фи МО=ОК=a2tga 4) Sосн.=Пr в квадрате =(a/cos2a)в квадрате *П=а в квадрате /(cos в степени 2а - sin в степени 2а) и вся скобка в степени 2П=П*а в квадрате / cos в степени 4а -2sin2acos2a+sin в степени 4а) = П* а в квадрате /1-sin2a 5)Vкон. 1/3 *Sосн.*h = 1/3*П*а в квадрате /1-sin2a*atg2a=Па в степени 3tg2a/3-3sin2a
2) Треугольник АОС (угол К =90 градусов) : АО=АК/сos2a=а/cos2a.
ОК=АК *tg2a=atg2a
3) МК перпендикулярна АС по теор о 3-х перпендик.,угол МКО есть двугранного угла плоскости АСМ и плоскостью основания . Треугольник МОК -прямоугольный и равнобедренный .
Угол МКО= фи
МО=ОК=a2tga
4) Sосн.=Пr в квадрате =(a/cos2a)в квадрате *П=а в квадрате /(cos в степени 2а - sin в степени 2а) и вся скобка в степени 2П=П*а в квадрате / cos в степени 4а -2sin2acos2a+sin в степени 4а) = П* а в квадрате /1-sin2a
5)Vкон. 1/3 *Sосн.*h = 1/3*П*а в квадрате /1-sin2a*atg2a=Па в степени 3tg2a/3-3sin2a