Если внешний угол треугольника равен 144 градосув, то внутренний - сумежный с ним будет равен градусов. 180-144=36.
Сумма всех углов треугольника равна 180 градусов. 1 угол мы нашли, значит на остальные 2 угла у нас идёт 180-36=144 градусов. (сумма остальных 2-ух углов.)
Если они относятся как 5:7, то делаем уравнение.
Пусть "х" - одна составная часть, тогда 5х - это второй угол, а 7х - это третий угол.
а) Пусть сечение пересекает плоскость верхнего основания по отрезку MN Так как основания параллельны, то прямая при этом М — середина значит, MN — средняя линия треугольника следовательно, N — середина
б) Построим сечение. Пусть Q и R — точки пересечения сечения с прямыми и соответственно. Тогда они лежат на прямой MN. Пусть теперь L и P — точки пересечения прямых AQ и CR (то есть сечения) с ребрами и соответственно. Таким образом, сечение — шестиугольник ALMNPC получаемый из прямоугольника AQRC отрезанием от него двух равных прямоугольных треугольников LMQ и NPR.
Так как основания призмы правильные шестиугольники со стороной
Если внешний угол треугольника равен 144 градосув, то внутренний - сумежный с ним будет равен градусов. 180-144=36.
Сумма всех углов треугольника равна 180 градусов. 1 угол мы нашли, значит на остальные 2 угла у нас идёт 180-36=144 градусов. (сумма остальных 2-ух углов.)
Если они относятся как 5:7, то делаем уравнение.
Пусть "х" - одна составная часть, тогда 5х - это второй угол, а 7х - это третий угол.
5х+7х=144
12х=144
х=12 градусов
1) 12*5=60 градусов - второй угол
2) 12*7=84 градусов - третий угол.
ответ: Наименьший угол равен 36, а наибольший 84
Решение.
а) Пусть сечение пересекает плоскость верхнего основания по отрезку MN Так как основания параллельны, то прямая при этом М — середина значит, MN — средняя линия треугольника следовательно, N — середина
б) Построим сечение. Пусть Q и R — точки пересечения сечения с прямыми и соответственно. Тогда они лежат на прямой MN. Пусть теперь L и P — точки пересечения прямых AQ и CR (то есть сечения) с ребрами и соответственно. Таким образом, сечение — шестиугольник ALMNPC получаемый из прямоугольника AQRC отрезанием от него двух равных прямоугольных треугольников LMQ и NPR.
Так как основания призмы правильные шестиугольники со стороной