1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см
1) Сумма углов треугольника 180°
В ∆ АВС ∠ АВС+∠ВАС=180°- 40°=140°
Сумма развернутых углов ∠НВС+∠КАС=360°
∠НВА+∠КАВ=360°- (∠ АВС+∠ВАС)=360°-140°=220°
Биссектрисы углов НВМ и КАВ делят их пополам.
Сумма половин этих углов вдвое меньше.
∠DBA+∠DAB=220:2=110°
∠BDA=180°-110°=70°
2)
По свойству медианы прямоугольного треугольника, проведенной к гипотенузе., CD=BD, ⇒
∠∆ CDB- равнобедренный, ∠ВСD=∠ABC=35°
∠ВСF=∠BCD+∠DCF=35°+10°=45°, т.е. равен половине прямого угла.
⇒ CF- биссектриса ∠АСВ.
3)
Срединный перпендикуляр делит АВ на равные отрезки АН=ВН
∆ АDВ - равнобедренный ( DH медиана и высота).
АС=AD+DC
В треугольнике любая сторона меньше суммы двух других ( по т. о неравенстве треугольника).
В ∆ ВDС сторона ВС < ВD+DC, а BD=AD. ⇒ ВС < AD+DC
Следовательно, ВС меньше АС.
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см
1) Сумма углов треугольника 180°
В ∆ АВС ∠ АВС+∠ВАС=180°- 40°=140°
Сумма развернутых углов ∠НВС+∠КАС=360°
∠НВА+∠КАВ=360°- (∠ АВС+∠ВАС)=360°-140°=220°
Биссектрисы углов НВМ и КАВ делят их пополам.
Сумма половин этих углов вдвое меньше.
∠DBA+∠DAB=220:2=110°
∠BDA=180°-110°=70°
2)
По свойству медианы прямоугольного треугольника, проведенной к гипотенузе., CD=BD, ⇒
∠∆ CDB- равнобедренный, ∠ВСD=∠ABC=35°
∠ВСF=∠BCD+∠DCF=35°+10°=45°, т.е. равен половине прямого угла.
⇒ CF- биссектриса ∠АСВ.
3)
Срединный перпендикуляр делит АВ на равные отрезки АН=ВН
∆ АDВ - равнобедренный ( DH медиана и высота).
АС=AD+DC
В треугольнике любая сторона меньше суммы двух других ( по т. о неравенстве треугольника).
В ∆ ВDС сторона ВС < ВD+DC, а BD=AD. ⇒ ВС < AD+DC
Следовательно, ВС меньше АС.