Найдите площадь полной поверхности прямой треугольной призмы, в основании которой лежит прямоугольный треугольник с катетом 7 и гипотенузой 25, если высота призмы равна 6.
Плоский угол при вершине правильной треугольной пирамиды равен 90°. Найти отношение боковой поверхности этой пирамиды к площади ее основания.
Площадь правильного треугольника - а основание правильной пирамиды - правильный треугольник S=(a²√3):4 Площадь боковой поверхности - это площадь трех граней пирамиды. Каждая грань - равнобедренный треугольник с основанием а, равным стороне правильного треугольника в основании пирамиды, и высотой h=апофеме. S=ah:2 Чтобы найти площадь боковой поверхности, нужно найти апофему. Угол АSC- прямой. Треугольник ASC - прямоугольный равнобедренный.
Апофема грани пирамиды - высота и медиана этого треугольника. Медиана прямоугольного треугольника равна половине гипотенузы.
Высота SM равна половине АС и равна а:2 Площадь треугольника АSС=(а*а:2):2=а²:4 Площадь боковой поверхности равна 3а²:4 Отношение боковой поверхности этой пирамиды к площади ее основания Sбок:S ᐃ АВС=(3а²:4):{(a²√3):4}=√3
Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,
AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.
Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:
AB^2=AH^2+BH^2, звідси
Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні CD=AB=13 см.
Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).
Розглянемо прямокутні трикутники ABH і KCD.
У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.
Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.
Плоский угол при вершине правильной треугольной пирамиды равен 90°.
Найти отношение боковой поверхности этой пирамиды к площади ее основания.
Площадь правильного треугольника - а основание правильной пирамиды - правильный треугольник
S=(a²√3):4
Площадь боковой поверхности - это площадь трех граней пирамиды.
Каждая грань - равнобедренный треугольник с основанием а, равным стороне правильного треугольника в основании пирамиды, и высотой h=апофеме.
S=ah:2
Чтобы найти площадь боковой поверхности, нужно найти апофему.
Угол АSC- прямой.
Треугольник ASC - прямоугольный равнобедренный.
Апофема грани пирамиды - высота и медиана этого треугольника.
Медиана прямоугольного треугольника равна половине гипотенузы.
Высота SM равна половине АС и равна а:2
Площадь треугольника АSС=(а*а:2):2=а²:4
Площадь боковой поверхности равна 3а²:4
Отношение боковой поверхности этой пирамиды к площади ее основания
Sбок:S ᐃ АВС=(3а²:4):{(a²√3):4}=√3
Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,
AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.
Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:
AB^2=AH^2+BH^2, звідси
Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні CD=AB=13 см.
Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).
Розглянемо прямокутні трикутники ABH і KCD.
У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.
Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.
Тоді у рівнобічній трапеції:
HK=HD-KD=11-5=6 см, тому BC=HK=6 см.
Знайдемо периметр рівнобічної трапеції ABCD:
P=AB+BC+CD+AD=13+6+13+6=48 см.
Відповідь: 48 см – В.