Найдите площадь поверхности конуса, получающегося вращением равнобедренного треугольника , основание которого равно 2 см , а боковая сторона 4 см , вокруг прямой , содержащей его высоту , опущенную на основание. .
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
Призма - правильная четырехугольная. в основании её - квадрат. диагональ наклонена к плоскости основания под углом 45°. значит, диагональ квадрата - основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. длина этой гипотенузы дана в условии - 4 см пусть х - катеты этого треугольника 4=х√2 х=4: √2=4√2: (√2*√2)=2√2 диагональ основания квадрата =2√2 высота призмы =2√2 основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. радиус этой окружности равен половине стороны квадрата - основания призмы. найдем эту сторону из формулы диагонали квадрата: d=а√2 мы нашли d=2√2, значит сторона квадрата а=2 r= 2: 2=1 имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. s =2πr*h= 2π*2√2 см²=4π√2 см²
Объяснение:
1. вектор AB + вектор BD= вектор AC + вектор CD
2. вектор AB + вектор BC= вектор AD + вектор DC
Это правило треугольника сложения векторов: Видим что конец первого вектора совпадает с началом второго. Значит результатом сложения будет вектор, обозначенный первой буквой первого вектора и второй буквой другого вектора:
АВ + ВD = AD, AC + CD = AD
Видим, что результаты сложения совпадают, что и требовалось доказать.
Аналогично и во втором примере:
AB + BC = AC, AD + DC = АС, что и треб. доказать.
АВСD - параллелограмм
1. CA = СВ + ВА = CD + DA
2. DA = DC + CA = DB + BA
1. вектор AB + вектор BC = AC
2. вектор MN + вектор NN = MN
3. вектор PQ+ вектор QR = PR
4.вектор EF + вектор DE = DE + EF = DF
выразите вектор BC через векторы AB и AC:
BC = AC - AB
взята точка D на стороне треугольника ABC. Выразите вектор BD через векторы AB и AD:
BD = AD - AB
Дан параллелограмм ABCD. Найдите разность:
1. вектор AB- вектор AC = CB
2. вектор BC - вектор CD = AB+BC = AC