У ромба все стороны равны, поэтому т.к. Р = 4а, где а - сторона ромба, то сторона ромба равна 40 : 4 =10 (см).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам, значит, получаем 4 равных прямоугольных треугольника, у которых катеты - это половинки диагоналей, а гипотенуза - сторона ромба.
Т.к. одна из диагоналей ромба равна 12 см, то ее половинка равна 6 см, тогда по теореме Пифагора второй катет (равен половине второй диагонали) равен: √(10² - 6²) = √(100 - 36) = √64 = 8 (см). Следовательно, вторая диагональ равна 2 · 8 = 16 (см)
96 см^2
Объяснение:
У ромба все стороны равны, поэтому т.к. Р = 4а, где а - сторона ромба, то сторона ромба равна 40 : 4 =10 (см).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам, значит, получаем 4 равных прямоугольных треугольника, у которых катеты - это половинки диагоналей, а гипотенуза - сторона ромба.
Т.к. одна из диагоналей ромба равна 12 см, то ее половинка равна 6 см, тогда по теореме Пифагора второй катет (равен половине второй диагонали) равен: √(10² - 6²) = √(100 - 36) = √64 = 8 (см). Следовательно, вторая диагональ равна 2 · 8 = 16 (см)
12×16:2=96 см^2