5√3 см.
Объяснение:
Дано: ΔАВС, ∠А=120°, ∠С=30°, АС=10 см.
Найти ВН.
ΔАВС - тупоугольный, поэтому высота ВН падает на продолжение стороны АС.
∠АВС=180-∠ВАС-∠С=180-120-30=30°, значит, ΔАВС - равнобедренный, АВ=АС=10 см.
∠ВАН=180-120=60° по свойству смежных углов
тогда ∠АВН=90-60=30°, т.к. ΔАВН - прямоугольный, а сумма острых углов прямоугольного треугольника составляет 90°
катет АН лежит против угла 30°, поэтому он равен половине гипотенузы АВ, т.е. 5 см.
Найдем ВН по теореме Пифагора
ВН=√(АВ²-АН²)=√(100-25)=√75=5√3 см.
∠CBF = ∠CBA + ∠ABF
Отсюда
∠CBA = ∠CBF — ∠ABF = 180° — 76° = 104°
Рассмотрим треугольник ABC
Сумма углов треугольника равна 180°:
∠CBA + ∠BAC + ∠ACB = 180°
104° + ∠BAC + ∠ACB = 180°
По условию задачи нам дан равнобедренный треугольник ACB. Согласно свойству равнобедренного треугольника — углы при основании (CA) равны. Т.е. ∠BAC и ∠ACB равны.
Следовательно
∠BAC + ∠ACB = 180° — 104° = 76°
∠BAC = ∠ACB = 76° : 2 = 38°
Рассмотрим треугольник ACO
По условию задачи в треугольнике ABC проведены биссектрисы CL и AM.
По определению, биссектриса делит угол пополам, следовательно
∠CAO = ∠CAB : 2 = 38° : 2 = 19°
∠ACO = ∠ACB : 2 = 38° : 2 = 19°
Сумма углов треугольника равна 180°:
∠CAO + ∠ACO + ∠AOC = 180°
19° + 19° + ∠AOC = 180°
∠AOC = 180° — 19° — 19° = 142°
ответ:
∠AOC = 142°
Как то так не гарантирую что это правильно
5√3 см.
Объяснение:
Дано: ΔАВС, ∠А=120°, ∠С=30°, АС=10 см.
Найти ВН.
ΔАВС - тупоугольный, поэтому высота ВН падает на продолжение стороны АС.
∠АВС=180-∠ВАС-∠С=180-120-30=30°, значит, ΔАВС - равнобедренный, АВ=АС=10 см.
∠ВАН=180-120=60° по свойству смежных углов
тогда ∠АВН=90-60=30°, т.к. ΔАВН - прямоугольный, а сумма острых углов прямоугольного треугольника составляет 90°
катет АН лежит против угла 30°, поэтому он равен половине гипотенузы АВ, т.е. 5 см.
Найдем ВН по теореме Пифагора
ВН=√(АВ²-АН²)=√(100-25)=√75=5√3 см.