Сторона квадрата а = квадратному корню из числа Q . Диаметр окружности, описанной около квадрата, по теореме Пифагора
d = квадратному корню из произведения2а в квдрате = корню квадратному из произведения 2Q. Радиус окружности в два раза меньше диаметра, поэтому
R =частному d/2= частному корня квадратного из произведения2Q/2 . Длину стороны правильного треугольника, вписанного в ту же окружность, выразим через радиус окружности: a=Rумноженное на квадратный корень из 3. Площадь правильного треугольника вычислим по формуле: S= частному произведения а на корень из3/4. После подстановок окончательный результат частное произведения 3Qумноженное на корень из3деленное на 8
ромб - параллелограмм, у кот.все стороны равныдиагонали ромба перпендикулярны и делятся точкой пересечения пополам (как и у любого параллелограмма)диагонали ромба - биссектрисы его угловромб ABCD AB=BC... AB=BD => треугольник ABD - равностороннийв равностороннем треугольнике все стороны и все углы равны => BAD = 180/3=60 = BDA = DBABD - биссектриса CDA => CDA = 2BDA = 2*60 = 120BAD = BCD, CDA = CBA (т.к. ромб - это параллелограмм)вторая диагональ AC = AO + OCиз ABO (AB=10, BO=5) по т.Пифагора AO = корень(10*10-5*5) = корень(100-25) = корень(75) = корень(25*3) = 5*корень(3)
Сторона квадрата а = квадратному корню из числа Q . Диаметр окружности, описанной около квадрата, по теореме Пифагора
d = квадратному корню из произведения2а в квдрате = корню квадратному из произведения 2Q. Радиус окружности в два раза меньше диаметра, поэтому
R =частному d/2= частному корня квадратного из произведения2Q/2 . Длину стороны правильного треугольника, вписанного в ту же окружность, выразим через радиус окружности: a=Rумноженное на квадратный корень из 3. Площадь правильного треугольника вычислим по формуле: S= частному произведения а на корень из3/4. После подстановок окончательный результат частное произведения 3Qумноженное на корень из3деленное на 8
ответ: ;