Решение. 1. Из верхнего угла пересечения верхнего меньшего основания и боковой стороны опускаем перпендикуляр на нижнее большее основание - этот перпендикуляр является высотой трапеции. Нужно найти значение высоты. 2. По наклонной боковой стороне получается равнобедренный треугольник (углы 45, 90 и 45 градусов) с катетами по нижнему основанию (5-1=4 см) и катетом-высотой равным также 4 см, так как в равнобедренном треугольники катеты равны друг другу. 3. вычисляем площадь трапеции (полусумма оснований умноженная на высоту) (5+1):2×4 = 6:2×4 = 3×4 = 12 (см²) ответ. площадь трапеции 12 см² (если размеры в сантиметрах)
Если гипотенуза АВ параллельна оси Ох, то точки А и В - противоположные. A(-x1; y1); B(x1; y1); |AB| = 2x1 Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1 |AC|^2 = (x2+x1)^2 + (y1-y2)^2 |BC|^2 = (x2-x1)^2 + (y1-y2)^2 По теореме Пифагора |AC|^2 + |BC|^2 = |AB|^2 (x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2 x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0 2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0 x2^2 + (y1-y2)^2 - x1^2 = 0 (y1 - y2)^2 = x1^2 - x2^2 Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2 (x1^2 - x2^2)^2 = x1^2 - x2^2 Число равно своему квадрату, значит, оно равно 0 или 1. (x1^2 - x2^2) = (y1 - y2) = 0 или 1 Но 0 разность ординат точек А и С равняться не может, значит, y1 - y2 = 1 Но разность ординат - это и есть высота треугольника.
1. Из верхнего угла пересечения верхнего меньшего основания и боковой стороны опускаем перпендикуляр на нижнее большее основание - этот перпендикуляр является высотой трапеции. Нужно найти значение высоты.
2. По наклонной боковой стороне получается равнобедренный треугольник (углы 45, 90 и 45 градусов) с катетами по нижнему основанию (5-1=4 см) и катетом-высотой равным также 4 см, так как в равнобедренном треугольники катеты равны друг другу.
3. вычисляем площадь трапеции (полусумма оснований умноженная на высоту)
(5+1):2×4 = 6:2×4 = 3×4 = 12 (см²)
ответ. площадь трапеции 12 см² (если размеры в сантиметрах)
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.