АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Вравнобедренном треугольнике отношение боковой стороны к основанию равно 4: 3, а периметр на 52 см меньше восьмикратного значения оанования.найдите стороны этого треугольника. на боковых сторонах равнобедренного треугольника авс с основанием ас, отложены равные отрезки ам и сn. медиана вd треугольника авс, пересеает сторону мn в точке о. доказать, что во является медианой треугольника вмn. на продолжении стороны вс треугольника отложен отрезок сd, равный отрезку ас, и построен отрезок аd.отрезок се является биссектрисой треугольника авс, а отрезок сf- медианой треугольника асd. доказать, что сf перпендикулярен се. один из внешних углов треугольника равен 140° , а отношение внутренних углов, не смежных с этим углом равно 3: 4. найти углы треугольника.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.