Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
для начала най дем площадь основания:
Опустим высоту АК из вершины А., тогда
по т Пиф АК= корень из(100-36)=8см, тогда
Sоснования=1/2*8*12=48 см кв.
Середину А1С1 обозначим т.М, тогда А1М=МС1=5 см ( по условию ) и ВМ=корень из 353
Из треугольника ВМС: МС=корень из(353-144)=корень из 209
Из треугольника МСС1: С1С=корень из(209-25)=корень из184=2корня из46 - высота призмы
S А1В1ВА=S A1C1CA=10*2корня из46=20корней из 46
S СС1В1В= 12*2корня из46=24 корня из46
Sбок пов= 20корней из 46+20корней из 46+24 корня из46=64корня из 46 см кв.
V призмы=Sоснования * высоту=48*2корня из46=96корней из46 см кубич.
ответ: Площадь боковой поверхности = 64корня из 46 см кв
объём призмы = 96корней из46 см кубич.
Удачи ! )