Найдите расстояние между прямыми CDи АВ, если эти прямы параллельны, угол BCD равен 30˚, СВ = 18 см.
Указание: см. рис. По определению расстояние между параллельными прямыми – это перпендикуляр. Опустите перпендикуляр ВН из точки В на прямую CD. И рассмотрите получившийся прямоугольный треугольник СВН
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
4 см
Объяснение:
Параллелограмм - четырехугольник, у которого противоположные стороны параллельны и равны. То есть если мы назовем параллелограмм ABCD, то АВ = СD и BC = AD.
Если две стороны относятся как 3:1, то они не равны. Значит это не могут быть противоположные стороны. Значит, это "ширина" и "длина". Из того, что периметр параллелограмма состоит из 2 "длин" и 2 "ширин", исходит, что эти две стороны являются полупериметром. Весь периметр это 32 см, значит полупериметр это 32\2 = 16 см.
Эти 2 стороны относятся 3:1. Если одна сторона это 1 часть, то другая сторона - это 3 части. В сумме 1 + 3 = 4 части. Эти 4 части являются полупериметром. Значит 1 часть это 16 \ 4 = 4 см.
Наименьшая сторона параллелограмма равнялась 1 части. Ее длина: 4*1 = 4 см
Если остались вопросы - спрашивайте!