По условию в треугольнике АВС, медиана АМ и биссектриса ВК - пересекаются в точке О, и ВО=2ОК. По свойству медиан треугольника они пересекаются в одной точке и делятся точкой пересечения в отношении 2:1 считая от вершины, значит биссектриса ВК- является и медианой треугольника АВС. По св-ву равнобедренного треугольника медиана проведенная к основанию является биссектрисой и высотой, значит ВК-медиана, биссектриса и высота, следовательно треугольник АВС - равнобедренный. Что и требовалось доказать.
По условию в треугольнике АВС, медиана АМ и биссектриса ВК - пересекаются в точке О, и ВО=2ОК. По свойству медиан треугольника они пересекаются в одной точке и делятся точкой пересечения в отношении 2:1 считая от вершины, значит биссектриса ВК- является и медианой треугольника АВС. По св-ву равнобедренного треугольника медиана проведенная к основанию является биссектрисой и высотой, значит ВК-медиана, биссектриса и высота, следовательно треугольник АВС - равнобедренный. Что и требовалось доказать.
решение: треугольник АDС. Допустим что треугольник прямоугольный. Докажем это. По теореме Пифагора - с2= а2+b2(где 2 -квадрат числа, с - гипотенуза, a и b катеты) - имеем: 13(2)=12(2)+5(2) проверим: 169=144+25 - верно, следовательно треугольник прямоугольный.
Раз угол BDC 90*, значит и угол BDA тоже 90*, следовательно треугольник ADB прямоугольный. В треугольнике ADB угол D=90*, угол А=45*, дальше по свойству прямоугольного треугольника( сумма острых углов в прямоугольном треугольнике равна 90*) имеем: 90* - уголА= 45* угол Аи угол Вравны( по 45*) следовательно треугольник равнобедренный. По свойству равнобедренного треугольника( против равных углов лежат равные стороны) имеем: AD=DB=12см.
AD=12см, DC = 5 см. AC= AD+DC= 12+5=17. Sabc=(BD*AC):2= 102см(2)
P.S. Надеюсь дала исчерпывающий ответ)))