1.Точка С - середина отрезка АВ. Найдите координаты точки А, если В(3;4), С(2,1) 2.Найти расстояние между точками А(1; 2) и В( - 3; 4) 3.Определить вид треугольника, вершины которого А(- 3; - 1), В(- 1; 5),С(5; 3)
Объяснение:
1)х(А)=2х(С)-х(В) , х(А)=2*2-3=1 ,
у(А)=2у(С)-у(В) , у(А)=2*1-4=-2 , А(1; -2)
2)АВ=√(4²+2²)=√20=2√5.
3)А(- 3; - 1), В(- 1; 5),С(5; 3)
АВ=√(4+36)=√40 , ВС=√(36+4)=√40 ⇒ΔАВС-равнобедренный , т.к. АВ=ВС
АС=√(64+16)=√80. Проверим т.обратную т. Пифагора АВ²+ВС²=40+40=80 и АС²=80 ⇒ΔАВС-равнобедренный , прямоугольный.
d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Теорема, обратная теореме Пифагора : если квадрат длины стороны треугольника равен сумме квадратов длин двух других сторон, то такой треугольник прямоугольный.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
1.Точка С - середина отрезка АВ. Найдите координаты точки А, если В(3;4), С(2,1) 2.Найти расстояние между точками А(1; 2) и В( - 3; 4) 3.Определить вид треугольника, вершины которого А(- 3; - 1), В(- 1; 5),С(5; 3)
Объяснение:
1)х(А)=2х(С)-х(В) , х(А)=2*2-3=1 ,
у(А)=2у(С)-у(В) , у(А)=2*1-4=-2 , А(1; -2)
2)АВ=√(4²+2²)=√20=2√5.
3)А(- 3; - 1), В(- 1; 5),С(5; 3)
АВ=√(4+36)=√40 , ВС=√(36+4)=√40 ⇒ΔАВС-равнобедренный , т.к. АВ=ВС
АС=√(64+16)=√80. Проверим т.обратную т. Пифагора АВ²+ВС²=40+40=80 и АС²=80 ⇒ΔАВС-равнобедренный , прямоугольный.
d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Теорема, обратная теореме Пифагора : если квадрат длины стороны треугольника равен сумме квадратов длин двух других сторон, то такой треугольник прямоугольный.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5