Вся эта конструкция является частью замощения плоскости, представленного на рисунке. Замощение переходит "в себя" при повороте всей плоскости на 90° вокруг центра любого из квадратов. Все "белые" параллелограммы равны между собой. Отсюда следует а). б) Фигура, изображенная красным на рисунке - это квадрат. Поскольку, к примеру, две её стороны, выходящие из центра большего квадрата, равны и перпендикулярны (еще раз - одна переходит в другую при повороте на 90° вокруг их общей вершины). То же касается и двух сторон, у которых общая вершина - центр меньшего квадрата. Поэтому расстояние от M до центров квадратов одинаковое, и равно стороне красного квадрата. Проще всего найти диагональ этого квадрата - надо соединить центры большого и малого квадратов с точкой C и между собой. Получится треугольник O1O2C с углом O1CO2; ∠O1CO2 = ∠ACB + ∠O1CA + ∠O2CB = 30° + 45° + 45° = 120°; и сторонами AO1 = 6√2/2 = 3√2; BO2 = 10√2/2 = 5√2; Отсюда (O1O2)^2 = (5√2)^2 + (3√2)^2 + 2*(5√2)*(3√2)*(1/2) = 2*49; O1O2 = 7√2; откуда MO1 = MO2 = 7;
PABCD - правильная четырехугольная пирамида, значит в основании у нее лежит квадрат, а боковые грани - равнобедренные треугольники. Объем правильной четырехугольной пирамиды: V=1/3×h×Sabcd. Sabcd=AB²=4см. Проведем диагонали в основании: AC и BD, точкой пересечения( точка О) они делятся пополам. Найдем диагональ AC. АС=АВ√2=2√2см. Значит половина диагонали( АО ) равна √2 см. Рассмотрим треугольник АОS. Он прямоугольный, где АО=√2 см. и AS=5 см. Из этого треугольника по теореме Пифагора: AS²=AO²+OS²; OS=√AS² - √AO²; OS=√25 - √2=√23 см. V=1/3×√23×4=4√23/3см²
Замощение переходит "в себя" при повороте всей плоскости на 90° вокруг центра любого из квадратов.
Все "белые" параллелограммы равны между собой. Отсюда следует а).
б) Фигура, изображенная красным на рисунке - это квадрат. Поскольку, к примеру, две её стороны, выходящие из центра большего квадрата, равны и перпендикулярны (еще раз - одна переходит в другую при повороте на 90° вокруг их общей вершины). То же касается и двух сторон, у которых общая вершина - центр меньшего квадрата.
Поэтому расстояние от M до центров квадратов одинаковое, и равно стороне красного квадрата. Проще всего найти диагональ этого квадрата - надо соединить центры большого и малого квадратов с точкой C и между собой. Получится треугольник O1O2C с углом O1CO2;
∠O1CO2 = ∠ACB + ∠O1CA + ∠O2CB = 30° + 45° + 45° = 120°; и сторонами AO1 = 6√2/2 = 3√2; BO2 = 10√2/2 = 5√2;
Отсюда (O1O2)^2 = (5√2)^2 + (3√2)^2 + 2*(5√2)*(3√2)*(1/2) = 2*49;
O1O2 = 7√2; откуда MO1 = MO2 = 7;