Решением треугольника называется нахождение всех его шести элементов (т. е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.
Из суммы углов треугольника найдем угол С:
∠С=180º-45º-60º=75º
В прямоугольном ⊿ ВНС угол ВСН=90º-45º=45º
⊿ ВНС - равнобедренный, СН=ВН=ВС•sin 45º=(√3•√2):2
В ⊿ АНС сторона АС=СH:sin 60º
AC=[(√3•√2):2]:(√2):2=√2
АВ=ВН+АН
АН противолежит углу НСА, равному 90º-60º=30º
АН=АС:2=(√2):2
АВ=(√3•√2):2+(√2):2=(√3+1):√2
––––––––––––
Или по т. синусов:
АВ:sin75=BC:sin60
sin 60º=(√3):2
sin 75º=(√3+1):2√2 ( из таблицы тригонометрических функций)
АВ:(√3+1):2√2=(√3):[(√3):2]⇒
AB=(√3+1):√2
--------------
или по т.косинусов
AB²=BC²+AC²- 2BC•AC•cos75º
cos 75º=(√3-1):2√2
AB²=3+2- 2√6•((√3-1):2√2)⇒
AB=√(2+√3)
Оба найденных значения АВ равны - проверьте, возведя их в квадрат.
[√(2+√3)]²=[(√3+1):√2]²
ABCDS - правильная пирамида.
Значит АВСD - квадрат. <SAO=60° (дано), <ASO=30°, так как треугольник АSO - прямоугольный (SO- высота пирамиды).
АО=12:2=6 см (как катет, лежащий против угла 30°).
Треугольник АОD - прямоугольный (АС и ВD - диагонали квадрата и AO=OD, а <AOD=90°).
Тогда АD=√(2*AO²)=АО√2 или AD=6√2. АН=3√2 см.
Апофема (высота грани) SH=√(AS²-AH²)=√(144-18)=3√14 см.
Площадь основания равна AD²=72 см².
Площадь грани равна (1/2)*SH*AD или
Sг=(1/2)*3√14*6√2 или 18√7.
Sполн=So+4*Sг=72+72√7=72(1+√7) см².
ответ: S=72(1+√7) см².
Решением треугольника называется нахождение всех его шести элементов (т. е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.
Из суммы углов треугольника найдем угол С:
∠С=180º-45º-60º=75º
В прямоугольном ⊿ ВНС угол ВСН=90º-45º=45º
⊿ ВНС - равнобедренный, СН=ВН=ВС•sin 45º=(√3•√2):2
В ⊿ АНС сторона АС=СH:sin 60º
AC=[(√3•√2):2]:(√2):2=√2
АВ=ВН+АН
АН противолежит углу НСА, равному 90º-60º=30º
АН=АС:2=(√2):2
АВ=(√3•√2):2+(√2):2=(√3+1):√2
––––––––––––
Или по т. синусов:
АВ:sin75=BC:sin60
sin 60º=(√3):2
sin 75º=(√3+1):2√2 ( из таблицы тригонометрических функций)
АВ:(√3+1):2√2=(√3):[(√3):2]⇒
AB=(√3+1):√2
--------------
или по т.косинусов
AB²=BC²+AC²- 2BC•AC•cos75º
cos 75º=(√3-1):2√2
AB²=3+2- 2√6•((√3-1):2√2)⇒
AB=√(2+√3)
Оба найденных значения АВ равны - проверьте, возведя их в квадрат.
[√(2+√3)]²=[(√3+1):√2]²
ABCDS - правильная пирамида.
Значит АВСD - квадрат. <SAO=60° (дано), <ASO=30°, так как треугольник АSO - прямоугольный (SO- высота пирамиды).
АО=12:2=6 см (как катет, лежащий против угла 30°).
Треугольник АОD - прямоугольный (АС и ВD - диагонали квадрата и AO=OD, а <AOD=90°).
Тогда АD=√(2*AO²)=АО√2 или AD=6√2. АН=3√2 см.
Апофема (высота грани) SH=√(AS²-AH²)=√(144-18)=3√14 см.
Площадь основания равна AD²=72 см².
Площадь грани равна (1/2)*SH*AD или
Sг=(1/2)*3√14*6√2 или 18√7.
Sполн=So+4*Sг=72+72√7=72(1+√7) см².
ответ: S=72(1+√7) см².