Найдите углы прямоугольного треугольника, если известно, что точка, симметричная вершине прямого угла относительно гипотенузы, лежит на прямой, проходящей через середины двух сторон треугольника.
ответ: 1. Знайдіть площу круга, вписаного в трикутник зі сторонами
13 см, 14 см і 15 см.
а) 36π см2;
б) 32π см2;
в) 12π см2;
г) 16π см2.
2. Одна зі сторін прямокутника дорівнює 8 см. Знайти площу прямокутника, якщо площа круга, описаного навколо нього, дорівнює 25π см2.
а) 24 см2;
б) 48 см2;
в) 25 см2;
г) 80 см2.
3. У прямокутник ABCD вписано три рівних кола радіуса 4 см так, як показано на рисунку. Знайдіть площу тієї частини прямокутника, яка розміщена поза вписаним в нього колам.
а) 92(2 – π) см2;
б) 28(4 – π) см2;
в) 48(4 – π) см2;
г) 64(2 – π) см2.
4. Площа кругового сектора становить 5/9 площі круга. Знайти площу цього, якщо довжина дуги, на яку він опирається, дорівнює 20π см.
а) 190π см2;
б) 210π см2;
в) 160π см2;
г) 180π см2.
5. Знайти площу трапеції, якщо кути, прилеглі до більшої основи, дорівнюють 30° і 45°, а довжина кола, вписаного у трапецію, дорівнює 10π см2.
а) 50(2 + √͞͞͞͞͞2) см2;
б) 25(2 + √͞͞͞͞͞2) см2;
в) (1 + √͞͞͞͞͞2) см2;
г) 60(2 + √͞͞͞͞͞3) см2.
6. Знайти площу трапеції, якщо кути, прилеглі до меншої основи, дорівнюють 120° і 150°, а площа круга, вписаного у трапецію, дорівнює 64π см2.
а) 64(2 + √͞͞͞͞͞2) см2;
б) 54(1 + √͞͞͞͞͞2) см2;
в) 64(2 + √͞͞͞͞͞5) см2;
г) 32(2 + √͞͞͞͞͞5) см2.
7. Знайти площу трапеції, якщо один із кутів, що прилягає до більшої основі, дорівнює 45°, до меншої – 150°, а довжина кола, вписаного у трапецію, дорівнює 12π см.
а) 60(1 + √͞͞͞͞͞2) см2;
б) 72(2 + √͞͞͞͞͞2) см2;
в) 36(2 + √͞͞͞͞͞2) см2;
г) 70(2 + √͞͞͞͞͞2) см2.
8. Знайти площу трапеції, якщо кути, прилеглі до більшої основи, дорівнюють 30° і 60°, а площа круга, вписаного у трапецію, дорівнює 36π см2.
а) 64(3 + √͞͞͞͞͞3) см2;
б) 46(1 + √͞͞͞͞͞2) см2;
в) 48(3 + √͞͞͞͞͞5) см2;
г) 48(3 + √͞͞͞͞͞3) см2.
9. Знайти площу трапеції, якщо кути, прилеглі до меншої основи, дорівнюють 135° і 150°, а довжина кола, вписаного у трапецію, дорівнює 12π см.
а) 60(1 + √͞͞͞͞͞2) см2;
б) 72(2 + √͞͞͞͞͞2) см2;
в) 36(2 + √͞͞͞͞͞2) см2;
г) 70(2 + √͞͞͞͞͞2) см2.
10. Знайти площу трапеції, якщо один із кутів при меншій основі дорівнює 135°, при більшій – 30°, а площа круга, вписаного у трапецію, дорівнює 25π см2.
а) 10(2 + √͞͞͞͞͞2) см2;
б) 50(1 + √͞͞͞͞͞2) см2;
в) 5(2 + √͞͞͞͞͞2) см2;
г) 50(2 + √͞͞͞͞͞2) см2.
11. Знайти площу кругового сегмента з основою а√͞͞͞͞͞3 і висотою а/2.
12. Знайдіть площу круга, описаного навколо трикутника зі сторонами
1. sin <A = √ (1-cos² <A)
sin <A = √ (1-0,8²)
sin <A = 0,6
sin <A = BC / AB
0,6 = 6 / AB, AB = 10 см
по теоремі Піфагора: АС² = 10²-6²
АС = 8 см
РΔАВС = 6 + 10 + 8
РΔАВС = 24 см
2. 1 + tg² <A = 1 / cos² <A
1 + 0,75² = 1 / cos² <A
1,5625 = 1 / cos² <A
cos <A = 0,8
cos <A = AC / AB
0,8 = AC / 15
AB = 12 см
по теоремі Піфагора: ВС = √ (15²-12²), ВС = 9 см
РΔАВС = 15 + 12 + 13, Р = 40 см
3. cosA = √ (1-sin²A), cosA = 0,6
cosA = AC / AB
0,6 = 12 / AB, AB = 20 см
BC = √ ( 20²-12²), BC = 16 см
PΔABC = 20 + 12 + 16
PΔABC = 48 см
Объяснение:
ответ: 1. Знайдіть площу круга, вписаного в трикутник зі сторонами
13 см, 14 см і 15 см.
а) 36π см2;
б) 32π см2;
в) 12π см2;
г) 16π см2.
2. Одна зі сторін прямокутника дорівнює 8 см. Знайти площу прямокутника, якщо площа круга, описаного навколо нього, дорівнює 25π см2.
а) 24 см2;
б) 48 см2;
в) 25 см2;
г) 80 см2.
3. У прямокутник ABCD вписано три рівних кола радіуса 4 см так, як показано на рисунку. Знайдіть площу тієї частини прямокутника, яка розміщена поза вписаним в нього колам.
а) 92(2 – π) см2;
б) 28(4 – π) см2;
в) 48(4 – π) см2;
г) 64(2 – π) см2.
4. Площа кругового сектора становить 5/9 площі круга. Знайти площу цього, якщо довжина дуги, на яку він опирається, дорівнює 20π см.
а) 190π см2;
б) 210π см2;
в) 160π см2;
г) 180π см2.
5. Знайти площу трапеції, якщо кути, прилеглі до більшої основи, дорівнюють 30° і 45°, а довжина кола, вписаного у трапецію, дорівнює 10π см2.
а) 50(2 + √͞͞͞͞͞2) см2;
б) 25(2 + √͞͞͞͞͞2) см2;
в) (1 + √͞͞͞͞͞2) см2;
г) 60(2 + √͞͞͞͞͞3) см2.
6. Знайти площу трапеції, якщо кути, прилеглі до меншої основи, дорівнюють 120° і 150°, а площа круга, вписаного у трапецію, дорівнює 64π см2.
а) 64(2 + √͞͞͞͞͞2) см2;
б) 54(1 + √͞͞͞͞͞2) см2;
в) 64(2 + √͞͞͞͞͞5) см2;
г) 32(2 + √͞͞͞͞͞5) см2.
7. Знайти площу трапеції, якщо один із кутів, що прилягає до більшої основі, дорівнює 45°, до меншої – 150°, а довжина кола, вписаного у трапецію, дорівнює 12π см.
а) 60(1 + √͞͞͞͞͞2) см2;
б) 72(2 + √͞͞͞͞͞2) см2;
в) 36(2 + √͞͞͞͞͞2) см2;
г) 70(2 + √͞͞͞͞͞2) см2.
8. Знайти площу трапеції, якщо кути, прилеглі до більшої основи, дорівнюють 30° і 60°, а площа круга, вписаного у трапецію, дорівнює 36π см2.
а) 64(3 + √͞͞͞͞͞3) см2;
б) 46(1 + √͞͞͞͞͞2) см2;
в) 48(3 + √͞͞͞͞͞5) см2;
г) 48(3 + √͞͞͞͞͞3) см2.
9. Знайти площу трапеції, якщо кути, прилеглі до меншої основи, дорівнюють 135° і 150°, а довжина кола, вписаного у трапецію, дорівнює 12π см.
а) 60(1 + √͞͞͞͞͞2) см2;
б) 72(2 + √͞͞͞͞͞2) см2;
в) 36(2 + √͞͞͞͞͞2) см2;
г) 70(2 + √͞͞͞͞͞2) см2.
10. Знайти площу трапеції, якщо один із кутів при меншій основі дорівнює 135°, при більшій – 30°, а площа круга, вписаного у трапецію, дорівнює 25π см2.
а) 10(2 + √͞͞͞͞͞2) см2;
б) 50(1 + √͞͞͞͞͞2) см2;
в) 5(2 + √͞͞͞͞͞2) см2;
г) 50(2 + √͞͞͞͞͞2) см2.
11. Знайти площу кругового сегмента з основою а√͞͞͞͞͞3 і висотою а/2.
12. Знайдіть площу круга, описаного навколо трикутника зі сторонами
7 см, 8 см і 9 см.
Объяснение: