Найдите углы вписанного прямоугольника в круге, отношение двух противоположных углов которого равно 3: 5, а отношение двух других равно 4: 5. A) Точки A, B, C и D вписанного прямоугольника ABCD являются градусами окружности 17: 21: 19: 15. Найти углы этого прямоугольника
Сумма углов произвольного выпуклого n-угольника равна 180° (n-2). Так как в правильном n-угольнике все углы равны, то каждый из них должен равняться
Подставляя вместо n различные значения, получим, что углы правильного треугольника равны 60°; углы правильного четырехугольника равны 90°; углы правильного пятиугольника равны 108°; углы правильного шестиугольника равны 120°.
Подставив в эту формулу значение угла 108 градусов, найдем n=5.
Данный многоугольник имеет пять сторон.
по т. Пифагора ВС = 8.
Пусть СН - высота, СК - медиана.
из треугольника АВС сosА = 15/17
из треугольника АСН сosА = АН/15
тогда АН = 225/17
т.к. треугольник АСН прямоугольный, то по т. Пифагора найдем СН. СР = 120/17
что касается медианы, то можно попробовать найти по теореме синусов угол А или В в треугольнике АВС и уже с известным углом опять-таки по теореме синусов найти СК в треугольнике АСК или ВСК (в зависимости от угла, который вы выбирете).
з.ы. не люблю синусы, а вы просите подсказать лишь ход решения, поэтому с чистой совестью не решаю))