См фото. Дано: цилиндр, АD=10 см, ОК=6 см, S(АВСD)=160 см². Найти S(цилиндра). Решение. АВСD сечение в виде прямоугольника, длина которого равна 10 см по условию. Площадь АВСD равна S=АВ·АD. 10·АВ=160, АВ=160/10=16 см. ΔАОВ - равнобедренный, АО=ВО=R (радиус цилиндра). ОК ⊥ АВ по условию (расстояние от О до АВ равно 6).ОК - медиана Значит ΔАОК прямоугольный, АК=ВК=16/2=8 см. Найдем ОА по теореме Пифагора ОА²=6²+8²=36+64=100, ОА=√100=10 см. Площадь основания S1=πR²=100π=314 см², площадь двух оснований цилиндра равна 314·2=628 см² Определим площадь боковой поверхности цилиндра S2=2πRh=2·3,14·10·10=628 см². Площадь полной поверхности цилиндра равна 628+628=1256 см². ответ: 1256 см².
Дано: ∆ABC - равнобедренный ∆A1B1C1 - равнобедренный AB = A1B1 ∠A = ∠A1 AM - медиана ∆ABC A1M1 - медиана ∆A1B1C1 ------------------------------------- Доказать, что AM = A1M1
Док-во:
Рассмотрим ∆ABC и ∆A1B1C1. ∠B = ∠C = (180° - ∠A)/2 ∠B1 = ∠C1 = (180° - ∠A1)/2 ∠A = ∠A1 => ∠B = ∠B1 ∠A = ∠A1 ∠B = ∠B1 AB = A1B1 Значит, ∆ABC = ∆A1B1C1 - по II признаку. Из равенства треугольников =. BC = B1C1 и AC = A1C1
Рассмотрим ∆AMC и ∆A1M1C1. MC = 1/2BC M1C1 = 1/1B1C1 BC = B1C1 => MC = M1C1. ∠C = ∠C1 AC = A1C1 Значит, ∆AMC = ∆A1M1C1 - по I признаку. Из равенства треугольников => AM = A1M1.
Дано: цилиндр,
АD=10 см, ОК=6 см,
S(АВСD)=160 см².
Найти S(цилиндра).
Решение.
АВСD сечение в виде прямоугольника, длина которого равна 10 см по условию. Площадь АВСD равна S=АВ·АD.
10·АВ=160,
АВ=160/10=16 см.
ΔАОВ - равнобедренный, АО=ВО=R (радиус цилиндра).
ОК ⊥ АВ по условию (расстояние от О до АВ равно 6).ОК - медиана Значит ΔАОК прямоугольный, АК=ВК=16/2=8 см.
Найдем ОА по теореме Пифагора ОА²=6²+8²=36+64=100,
ОА=√100=10 см.
Площадь основания S1=πR²=100π=314 см²,
площадь двух оснований цилиндра равна 314·2=628 см²
Определим площадь боковой поверхности цилиндра
S2=2πRh=2·3,14·10·10=628 см².
Площадь полной поверхности цилиндра равна 628+628=1256 см².
ответ: 1256 см².
∆ABC - равнобедренный
∆A1B1C1 - равнобедренный
AB = A1B1
∠A = ∠A1
AM - медиана ∆ABC
A1M1 - медиана ∆A1B1C1
-------------------------------------
Доказать, что AM = A1M1
Док-во:
Рассмотрим ∆ABC и ∆A1B1C1.
∠B = ∠C = (180° - ∠A)/2
∠B1 = ∠C1 = (180° - ∠A1)/2
∠A = ∠A1 => ∠B = ∠B1
∠A = ∠A1
∠B = ∠B1
AB = A1B1
Значит, ∆ABC = ∆A1B1C1 - по II признаку.
Из равенства треугольников =. BC = B1C1 и AC = A1C1
Рассмотрим ∆AMC и ∆A1M1C1.
MC = 1/2BC
M1C1 = 1/1B1C1
BC = B1C1 => MC = M1C1.
∠C = ∠C1
AC = A1C1
Значит, ∆AMC = ∆A1M1C1 - по I признаку.
Из равенства треугольников => AM = A1M1.