Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
Выразим площадь параллелограмма S, построив его высоту СН: S ABCE=AE*CH. Выразим площадь прямоугольника S1: S1 А1В1С1Е1=А1Е1*А1В1 Но А1Е1=АЕ, поэтому можно записать так: S1 А1В1С1Е1=А1Е1*А1В1=АЕ*А1В1 Зная, что S1 больше S в 2 раза, можно записать: S1=2S, или АЕ*А1В1=2*AE*CH, отсюда А1В1=2СН, СН=1/2А1В1 Помня, что А1В1=СЕ, можно записать для СН так: СН=1/2А1В1=1/2СЕ Т.е. в прямоугольном треуг-ке СНЕ на рис.1 катет СН равен половине гипотенузы СЕ. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит <CEH=30°. Тогда <AEC=180-30=150°
S ABCE=AE*CH.
Выразим площадь прямоугольника S1:
S1 А1В1С1Е1=А1Е1*А1В1
Но А1Е1=АЕ, поэтому можно записать так:
S1 А1В1С1Е1=А1Е1*А1В1=АЕ*А1В1
Зная, что S1 больше S в 2 раза, можно записать:
S1=2S, или
АЕ*А1В1=2*AE*CH, отсюда
А1В1=2СН, СН=1/2А1В1
Помня, что А1В1=СЕ, можно записать для СН так:
СН=1/2А1В1=1/2СЕ
Т.е. в прямоугольном треуг-ке СНЕ на рис.1 катет СН равен половине гипотенузы СЕ. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. Значит
<CEH=30°. Тогда <AEC=180-30=150°