АВСД трапеция АВ=СД, уголА=уголД, К-точка касания окружности на АВ, Т- на ВС, М-на СД, Е- на АД, АК=МД=18, ВК=СМ=8, АВ=СД=АК+ВК=18+8=26, АК=АЕ=18 - как касательные проведенные из одной точки к окружности, ВК=ВТ=8 - как касательные..., СМ=СТ=8 как касательные..., МД=ДЕ=18 как касательные, ВС=ВТ+СТ=8+8=16, АД=АЕ+ДЕ=18+18=36,
проводим перпендикуляры ВН и СЛ на АД, НВСЛ-прямоугольник ВС=НЛ=16,
треугольник АВН=треугольник ЛСД как прямоугольные по гипотенузе и острому углу, АН=ДЛ=(АД-НЛ)/2=(36-16)/2=10, треугольник АВН ВН²=АВ²-АН²=676-100=576, ВН=24- диаметр вписанной окружности, радиус=ВН/2=24/2=12
Возможно, я не правильно поняла Ваши скобки, но у меня получилось такое решение:
Возьмём правильный четырёхугольник, который вписан в данную окружность. Этот четырёхугольник - квадрат, пусть его сторона равна х. Диагональ этого квадрата равна диаметру окружности равна 2R. Тогда получаем через теорему Пифагора следующее утверждение:
Сторона правильного четырёхугольника стягивает дугу в 360\4=90 градусов, тогда сторона восьмиугольника будет стягивать дугу в 360\8=45 градусов, а двенадцатиугольника - 30 градусов. Пусть сторона восьмиугольника равна а, сторона двенадцатиугольника равна б, составим отношение:
Возможно, это то, что вам нужно, потому что цифры те же, может быть, вы сможете получить требуемое выражение из этого путём преобразований, но дальше, извините я Вам не в силах, потому что, как уже писала, скобки ваши не поняла.
АВСД трапеция АВ=СД, уголА=уголД, К-точка касания окружности на АВ, Т- на ВС, М-на СД, Е- на АД, АК=МД=18, ВК=СМ=8, АВ=СД=АК+ВК=18+8=26, АК=АЕ=18 - как касательные проведенные из одной точки к окружности, ВК=ВТ=8 - как касательные..., СМ=СТ=8 как касательные..., МД=ДЕ=18 как касательные, ВС=ВТ+СТ=8+8=16, АД=АЕ+ДЕ=18+18=36,
проводим перпендикуляры ВН и СЛ на АД, НВСЛ-прямоугольник ВС=НЛ=16,
треугольник АВН=треугольник ЛСД как прямоугольные по гипотенузе и острому углу, АН=ДЛ=(АД-НЛ)/2=(36-16)/2=10, треугольник АВН ВН²=АВ²-АН²=676-100=576, ВН=24- диаметр вписанной окружности, радиус=ВН/2=24/2=12
Возьмём правильный четырёхугольник, который вписан в данную окружность. Этот четырёхугольник - квадрат, пусть его сторона равна х. Диагональ этого квадрата равна диаметру окружности равна 2R. Тогда получаем через теорему Пифагора следующее утверждение:
Сторона правильного четырёхугольника стягивает дугу в 360\4=90 градусов, тогда сторона восьмиугольника будет стягивать дугу в 360\8=45 градусов, а двенадцатиугольника - 30 градусов. Пусть сторона восьмиугольника равна а, сторона двенадцатиугольника равна б, составим отношение:
Возможно, это то, что вам нужно, потому что цифры те же, может быть, вы сможете получить требуемое выражение из этого путём преобразований, но дальше, извините я Вам не в силах, потому что, как уже писала, скобки ваши не поняла.