Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.
DM=3см, <BDC=25гр
Объяснение:
Странная задача, считать ничего и не надо.
1) Из равенства и параллельности AD=BC, AB=CD делаем вывод, что ABCD - параллелограмм. В нём <BDC=<ABD как накрест лежащие углы при параллельных отрезках AB и CD
2) Рассмотрим тр-ки BPC и DMA. У них AD=BC по условию, <BCP=<DAM как равные при проведении биссектрис от равных углов параллелограмма. А <PBC=<MDA как накрест лежащие при параллельных отрезках AD и BC. Значит тр-ки BPC и DMA равны по 2-му признаку и стало быть DM=BP=3см.