Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
Две прямые лежат в одной плоскости, если смешанное произведение их направляющих векторов и третьего вектора, проведённого между двумя точками, лежащими на этих прямых, равно 0 . (При равенстве нулю смешанного произведения делаем вывод о компланарности трёх векторов.)
Из уравнения прямых можно выписать координаты направляющих векторов и координаты точек, лежащих на прямых .
\begin{gathered}l_1:\; \frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{-2}\; \; ,\; \; \vec{s}_1=(2,-1,-2)\; ,\; \; M_1(1,-2,0) l_2:\; \frac{x+1}{1}=\frac{y+11}{2}=\frac{z+6}{1}\; \; ,\; \; \vec{s}_2=(1,2,1 )\; \; ,\; \; M_2(-1,-11,-6)overline {M_2M_1}=(1+1,-2+11,0+6)=(2,9,6)(\overline {M_2M_1},\vec{s}_1,\vec{s}_2)= \left|\begin{array}{ccc}2&9&6\\2&-1&-2\\1&2&1\end{array}\right|= 2(-1+2)-9(2+2)+6(4+1)=0\end{gathered}
l
1
:
2
x−1
=
−1
y+2
=
−2
z
,
s
1
=(2,−1,−2),M
1
(1,−2,0)
l
2
:
1
x+1
=
2
y+11
=
1
z+6
,
s
2
=(1,2,1),M
2
(−1,−11,−6)
M
2
M
1
=(1+1,−2+11,0+6)=(2,9,6)
(
M
2
M
1
,
s
1
,
s
2
)=
∣
∣
∣
∣
∣
∣
∣
2
2
1
9
−1
2
6
−2
1
∣
∣
∣
∣
∣
∣
∣
=2(−1+2)−9(2+2)+6(4+1)=0