Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).
знайдемо середини диагоналей читырехугольника
середина диагоналей aс: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина диагоналей bd: x=(2+(-6))/2=-2; y=(1+3)/2=2
середины диагоналей данного читерехугольника сокращаються, значить паралелограмом
по формуле знаем что довжиния сторн читерехугольника abcd
ab=корень(())^2+())^2)=корень(25+9)=корень(34)
bc=-2)^2+(6-1)^2)=корень(9+25)=корень(34)
cd=))^2+(3-6)^2)=корень(25+9)=корень(34)
ad=))^2+())^2)=корень(9+25)=корень(34)
сторони даного паралелограма равен, тому ромбом.
по формулі відстані знайдемо довжини діагоналей чотирикутника abcd
ac=корі))^2+())^2)=корінь(4+64)=корінь(68)
bd=корі-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат