Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ). Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона. Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.
∠B = 30°
Пояснение:
Дано: Δ АВС, ∠С = 90°, ∠АОС = 105°, биссектрисы CD и АЕ, что пересекаются в точке О
Найти: меньший острый угол Δ АВС
Решение
∠CAO = ∠OAD (так как биссетриса AE делит угол ∠А пополам)
∠ACD = ∠OCB= ∠C/2 = 90°/2 = 45° (так как биссетриса CD делит угол ∠C пополам)
Рассмотрим Δ CAO, в котором ∠CAO = 45°, ∠АОС = 105°, ∠CAO - ?
Так как сумма всех углов в треугольнике равна 180°, то
∠CAO = 180° - (105° + 45°) = 180° - 150° = 30°
∠CAO = ∠OAD = 30°, следовательно ∠А = ∠CAO + ∠OAD = 60°
Рассмотрим Δ АВС, в котором ∠С = 90°, ∠А= 60, ∠B - ?
Так как сумма углов при катетах в прямоугольном треугольнике равна 90°, то
∠B = 90° - ∠А = 90° - 60° = 30°
ответ: ∠B = 30°
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ).
Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона.
Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.